login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070380 a(n) = 5^n mod 32. 1
1, 5, 25, 29, 17, 21, 9, 13, 1, 5, 25, 29, 17, 21, 9, 13, 1, 5, 25, 29, 17, 21, 9, 13, 1, 5, 25, 29, 17, 21, 9, 13, 1, 5, 25, 29, 17, 21, 9, 13, 1, 5, 25, 29, 17, 21, 9, 13, 1, 5, 25, 29, 17, 21, 9, 13, 1, 5, 25, 29, 17, 21, 9, 13, 1, 5, 25, 29, 17, 21, 9, 13, 1, 5, 25, 29, 17, 21, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1). [R. J. Mathar, Apr 20 2010]

FORMULA

a(n) = (1/28)*{57*(n mod 8)+[(n+1) mod 8]+57*[(n+2) mod 8]+[(n+3) mod 8]+57*[(n+4) mod 8]+[(n+5) mod 8]-55*[(n+6) mod 8]+[(n+7) mod 8]}, with n>=0. - Paolo P. Lava, Feb 24 2010

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-8).

G.f.: ( -1-5*x-25*x^2-29*x^3-17*x^4-21*x^5-9*x^6-13*x^7 ) / ( (x-1)*(1+x)*(x^2+1)*(x^4+1) ). (End)

MATHEMATICA

PowerMod[5, Range[0, 50], 32] (* G. C. Greubel, Mar 16 2016 *)

PROG

(Sage) [power_mod(5, n, 32)for n in xrange(0, 79)] # Zerinvary Lajos, Nov 26 2009

(PARI) a(n) = lift(Mod(5, 32)^n); \\ Altug Alkan, Mar 16 2016

CROSSREFS

Sequence in context: A137111 A137110 A036137 * A068574 A000350 A000221

Adjacent sequences:  A070377 A070378 A070379 * A070381 A070382 A070383

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, May 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 07:02 EST 2017. Contains 294915 sequences.