login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070376 a(n) = 5^n mod 26. 1
1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21, 1, 5, 25, 21 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,-1,1).

FORMULA

a(n) = (1/6)*{43*(n mod 4)+19*[(n+1) mod 4]-17*[(n+2) mod 4]+7*[(n+3) mod 4]}, with n>=0. - Paolo P. Lava, Feb 24 2010

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-1) - a(n-2) + a(n-3).

G.f.: ( -1-4*x-21*x^2 ) / ( (x-1)*(1+x^2) ). (End)

a(n) = 13-2*((3+2*i)*(-i)^n+(3-2*i)*i^n), where i = sqrt(-1). - Bruno Berselli, Feb 07 2011

From G. C. Greubel, Mar 13 2016: (Start)

a(n) = a(n-4).

E.g.f.: 13*exp(x) - 12*cos(x) - 8*sin(x). (End)

MAPLE

A070376:=n->5^n mod 26: seq(A070376(n), n=0..100); # Wesley Ivan Hurt, Mar 13 2016

MATHEMATICA

PowerMod[5, Range[0, 50], 26] (* G. C. Greubel, Mar 13 2016 *)

PROG

(Sage) [power_mod(5, n, 26) for n in xrange(0, 84)] # Zerinvary Lajos, Nov 26 2009

(PARI) a(n)=lift(Mod(5, 26)^n) \\ Charles R Greathouse IV, Mar 22 2016

CROSSREFS

Sequence in context: A070377 A070383 A070061 * A036139 A070382 A271379

Adjacent sequences:  A070373 A070374 A070375 * A070377 A070378 A070379

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 17 11:40 EDT 2017. Contains 290635 sequences.