login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070374 a(n) = 5^n mod 21. 1
1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).

FORMULA

a(n) = (1/30)*{101*(n mod 6)+16*[(n+1) mod 6]+41*[(n+2) mod 6]-59*[(n+3) mod 6]+26*[(n+4) mod 6]+[(n+5) mod 6]}, with n>=0. - Paolo P. Lava, Feb 24 2010

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-1) - a(n-3) + a(n-4).

G.f.: ( -1-4*x+x^2-17*x^3 ) / ( (x-1)*(1+x)*(x^2-x+1) ). (End)

From G. C. Greubel, Mar 13 2016: (Start)

a(n) = a(n-6).

E.g.f.: 7*cosh(x) + 14*sinh(x) - 6*exp(x/2)*cos(sqrt(3)*x/2) - 4*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2). (End)

MATHEMATICA

PowerMod[5, Range[0, 50], 21] (* G. C. Greubel, Mar 13 2016 *)

PROG

(Sage) [power_mod(5, n, 21) for n in xrange(0, 83)] # Zerinvary Lajos, Nov 26 2009

(PARI) a(n)=lift(Mod(5, 21)^n) \\ Charles R Greathouse IV, Mar 22 2016

CROSSREFS

Sequence in context: A271409 A246326 A272506 * A057423 A215139 A240987

Adjacent sequences:  A070371 A070372 A070373 * A070375 A070376 A070377

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 04:05 EST 2017. Contains 294959 sequences.