This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070373 a(n) = 5^n mod 19. 5
 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 6, 11, 17, 9, 7, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Period 9: repeat [1, 5, 6, 11, 17, 9, 7, 16, 4]. LINKS G. C. Greubel, Table of n, a(n) for n = 0..999 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1). [R. J. Mathar, Apr 20 2010] FORMULA a(n) = (1/81)*{46*(n mod 9)+127*[(n+1) mod 9]-62*[(n+2) mod 9]+37*[(n+3) mod 9]+91*[(n+4) mod 9]-35*[(n+5) mod 9]-26*[(n+6) mod 9]+10*[(n+7) mod 9]-17*[(n+8) mod 9]}, with n>=0. - Paolo P. Lava, Feb 24 2010 From R. J. Mathar, Apr 20 2010: (Start) a(n) = a(n-9). G.f.: ( -1-5*x-6*x^2-11*x^3-17*x^4-9*x^5-7*x^6-16*x^7-4*x^8 ) / ( (x-1)*(1+x+x^2)*(x^6+x^3+1) ). (End) MATHEMATICA PowerMod[5, Range[0, 100], 19] (* Harvey P. Dale, Aug 18 2015 *) PadRight[{}, 100, {1, 5, 6, 11, 17, 9, 7, 16, 4}] (* Harvey P. Dale, Aug 18 2015 *) PROG (Sage) [power_mod(5, n, 19) for n in xrange(0, 89)] # Zerinvary Lajos, Nov 26 2009 (PARI) a(n) = lift(Mod(5, 19)^n); \\ Michel Marcus, Mar 05 2016 (MAGMA) [Modexp(5, n, 19): n in [0..100]]; // Vincenzo Librandi, Jun 29 2016 CROSSREFS Cf. A000351. Sequence in context: A136974 A101187 A277550 * A231000 A274283 A022095 Adjacent sequences:  A070370 A070371 A070372 * A070374 A070375 A070376 KEYWORD nonn AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 07:27 EDT 2019. Contains 321345 sequences. (Running on oeis4.)