login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070372 a(n) = 5^n mod 18. 1
1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13, 11, 1, 5, 7, 17, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..999

Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1). [From R. J. Mathar, Apr 20 2010]

FORMULA

a(n) = (1/15)*{34*(n mod 6)+14*[(n+1) mod 6]+19*[(n+2) mod 6]-16*[(n+3) mod 6]+4*[(n+4) mod 6]-[(n+5) mod 6]}], with n>=0. - Paolo P. Lava, Feb 24 2010

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-1) - a(n-3) + a(n-4).

G.f.: ( -1-4*x-2*x^2-11*x^3 ) / ( (x-1)*(1+x)*(x^2-x+1) ). (End)

a(n) = a(n-6). - G. C. Greubel, Mar 05 2016

MATHEMATICA

PowerMod[5, Range[0, 150], 18]  (* Harvey P. Dale, Mar 24 2011 *)

Table[Mod[5^n, 18], {n, 0, 100}] (* G. C. Greubel, Mar 05 2016 *)

PROG

(Sage) [power_mod(5, n, 18) for n in xrange(0, 83)] # Zerinvary Lajos, Nov 26 2009

(PARI) a(n) = lift(Mod(5, 18)^n); \\ Michel Marcus, Mar 05 2016

CROSSREFS

Cf. A000351.

Sequence in context: A276717 A060640 A064944 * A082818 A224070 A075089

Adjacent sequences:  A070369 A070370 A070371 * A070373 A070374 A070375

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 13:53 EST 2017. Contains 295001 sequences.