This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070371 a(n) = 5^n mod 17. 3
 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 8, 6, 13, 14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Periodic with period 16 (5 is a primitive root of 17). [Joerg Arndt, Mar 06 2016] LINKS G. C. Greubel, Table of n, a(n) for n = 0..999 Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,-1,1). [From R. J. Mathar, Apr 20 2010] FORMULA From R. J. Mathar, Apr 20 2010: (Start) a(n) = a(n-1) - a(n-8) + a(n-9). G.f.: (-1-4*x-3*x^2+2*x^3-7*x^4-x^5+12*x^6-8*x^7-7*x^8) / ((x-1)*(1+x^8)). (End) a(n) = a(n-16). - G. C. Greubel, Mar 05 2016 MATHEMATICA PowerMod[5, Range[0, 90], 17] (* or *) LinearRecurrence[ {1, 0, 0, 0, 0, 0, 0, -1, 1}, {1, 5, 8, 6, 13, 14, 2, 10, 16}, 90] (* Harvey P. Dale, Jun 26 2013 *) Table[Mod[5^n, 17], {n, 0, 100}] (* G. C. Greubel, Mar 05 2016 *) PROG (Sage) [power_mod(5, n, 17) for n in xrange(0, 86)] # Zerinvary Lajos, Nov 26 2009 (PARI) a(n) = lift(Mod(5, 17)^n); \\ Michel Marcus, Mar 05 2016 (PARI) x='x+O('x^100); Vec((-1-4*x-3*x^2+2*x^3-7*x^4-x^5+12*x^6-8*x^7-7*x^8)/((x-1)*(1+x^8))) \\ Altug Alkan, Mar 05 2016 (MAGMA) &cat[[1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7]^^5]; // Vincenzo Librandi, Mar 06 2016 CROSSREFS Cf. A000351. Sequence in context: A160043 A322633 A145432 * A199444 A005120 A133731 Adjacent sequences:  A070368 A070369 A070370 * A070372 A070373 A070374 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 14:17 EST 2019. Contains 319364 sequences. (Running on oeis4.)