This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070365 a(n) = 5^n mod 7. 5
 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Klaus Brockhaus, May 23 2010: (Start) Period 6: repeat [1, 5, 4, 6, 2, 3]. Continued fraction expansion of (221+11*sqrt(1086))/490. Decimal expansion of 199/1287. First bisection is A153727. (End) LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1). FORMULA a(n) = (1/30)*(17*(n mod 6)+2*((n+1) mod 6)+27*((n+2) mod 6)-3*((n+3) mod 6)+12*((n+4) mod 6)-13*((n+5) mod 6)). - Paolo P. Lava, Feb 24 2010 From R. J. Mathar, Apr 13 2010: (Start) a(n) = a(n-1) - a(n-3) + a(n-4) for n>3. G.f.: (1+4*x-x^2+3*x^3)/ ((1-x)*(1+x)*(x^2-x+1)). (End) From Klaus Brockhaus, May 23 2010: (Start) a(n+1)-a(n) = A178141(n). a(n+2)-a(n) = A117373(n+5). (End) From G. C. Greubel, Mar 05 2016: (Start) a(n) = a(n-6) for n>5. E.g.f.: (1/3)*(7*cosh(x) + 14*sinh(x) + 2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2) - 4*exp(x/2)*cos(sqrt(3)*x/2)). (End) a(n) = (21 - 7*cos(n*Pi) - 8*cos(n*Pi/3) + 4*sqrt(3)*sin(n*Pi/3))/6. - Wesley Ivan Hurt, Jun 23 2016 a(n) = A010876(A000351(n)). - Michel Marcus, Jun 27 2016 MAPLE A070365:=n->[1, 5, 4, 6, 2, 3][(n mod 6)+1]: seq(A070365(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016 MATHEMATICA PowerMod[5, Range[0, 110], 7] (* or *) LinearRecurrence[{1, 0, -1, 1}, {1, 5, 4, 6}, 110] (* Harvey P. Dale, Apr 26 2011 *) Table[Mod[5^n, 7], {n, 0, 100}] (* G. C. Greubel, Mar 05 2016 *) PadRight[{}, 100, {1, 5, 4, 6, 2, 3}] (* or *) CoefficientList[Series[(1 + 5 x + 4 x^2 + 6 x^3 + 2 x^4 + 3 x^5) / (1 - x^6), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 24 2016 *) PROG (PARI) a(n)=lift(Mod(5, 7)^n) \\ Charles R Greathouse IV, Mar 22 2016 (MAGMA) [Modexp(5, n, 7): n in [0..100]]; // Vincenzo Librandi, Mar 24 2016 - after Bruno Berselli CROSSREFS Cf. A178229 (decimal expansion of (221+11*sqrt(1086))/490), A178141 (repeat 4, -1, 2, -4, 1, -2), A117373 (repeat 1, -2, -3, -1, 2, 3), A153727 (trajectory of 3x+1 sequence starting at 1). Cf. A000351, A010876. Sequence in context: A176317 A092426 A255291 * A190613 A161011 A232734 Adjacent sequences:  A070362 A070363 A070364 * A070366 A070367 A070368 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 01:46 EST 2019. Contains 329850 sequences. (Running on oeis4.)