login
a(n) = 3^n mod 46.
1

%I #28 Dec 25 2023 11:24:32

%S 1,3,9,27,35,13,39,25,29,41,31,1,3,9,27,35,13,39,25,29,41,31,1,3,9,27,

%T 35,13,39,25,29,41,31,1,3,9,27,35,13,39,25,29,41,31,1,3,9,27,35,13,39,

%U 25,29,41,31,1,3,9,27,35,13,39,25,29,41,31,1,3,9,27,35,13,39,25,29,41

%N a(n) = 3^n mod 46.

%H G. C. Greubel, <a href="/A070363/b070363.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,1).

%F From _R. J. Mathar_, Feb 08 2011: (Start)

%F a(n) = a(n-11).

%F G.f.: (-1-3*x-9*x^2-27*x^3-35*x^4-13*x^5-39*x^6-25*x^7-29*x^8-41*x^9

%F -31*x^10) / ((x-1)*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)). (End)

%t PowerMod[3, Range[0,50], 46] (* or *) Table[Mod[3^n, 46], {n, 0, 100}] (* _G. C. Greubel_, Mar 09 2016 *)

%o (PARI) a(n)=lift(Mod(3,46)^n) \\ _Charles R Greathouse IV_, Mar 22 2016

%Y Cf. A000244.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, May 12 2002