login
A070348
a(n) = 2^n mod 41.
4
1, 2, 4, 8, 16, 32, 23, 5, 10, 20, 40, 39, 37, 33, 25, 9, 18, 36, 31, 21, 1, 2, 4, 8, 16, 32, 23, 5, 10, 20, 40, 39, 37, 33, 25, 9, 18, 36, 31, 21, 1, 2, 4, 8, 16, 32, 23, 5, 10, 20, 40, 39, 37, 33, 25, 9, 18, 36, 31, 21, 1, 2, 4, 8, 16, 32, 23, 5, 10, 20, 40, 39, 37, 33, 25, 9, 18
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
FORMULA
From R. J. Mathar, Feb 06 2011: (Start)
a(n) = a(n-1) - a(n-10) + a(n-11).
G.f.: (-1-x-2*x^2-4*x^3-8*x^4-16*x^5+9*x^6+18*x^7-5*x^8-10*x^9-21*x^10 ) / ( (x-1)*(x^2+1)*(x^8-x^6+x^4-x^2+1) ). (End)
a(n) = a(n-20). - G. C. Greubel, Mar 11 2016
MATHEMATICA
PowerMod[2, Range[0, 50], 41] (* G. C. Greubel, Mar 11 2016 *)
PROG
(PARI) a(n)=lift(Mod(2, 41)^n) \\ Charles R Greathouse IV, Mar 22 2016
(GAP) a:=List([0..100], n->PowerMod(2, n, 41));; Print(a); # Muniru A Asiru, Jan 28 2019
CROSSREFS
Sequence in context: A070351 A070350 A070349 * A130670 A070340 A036124
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved