This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070262 5th diagonal of triangle defined in A051537. 5
 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675, 2805, 182, 3021, 783 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1). FORMULA a(n) = lcm(n + 4, n) / gcd(n + 4, n). From Colin Barker, Mar 27 2017: (Start) G.f.: x*(5 + 3*x + 21*x^2 + 2*x^3 + 30*x^4 + 6*x^5 + 14*x^6 - 3*x^8 - x^9 - 3*x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3). a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12) for n>12. (End) From Luce ETIENNE, May 10 2018: (Start) a(n) = n*(n+4)*4^((5*(n mod 4)^3 - 24*(n mod 4)^2 + 31*(n mod 4)-12)/6). a(n) = n*(n+4)*(37-27*cos(n*Pi)-6*cos(n*Pi/2))/64. (End) MATHEMATICA Table[ LCM[i + 4, i] / GCD[i + 4, i], {i, 1, 60}] LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12}, 90] (* Harvey P. Dale, Jul 13 2019 *) PROG (PARI) Vec(x*(5 + 3*x + 21*x^2 + 2*x^3 + 30*x^4 + 6*x^5 + 14*x^6 - 3*x^8 - x^9 - 3*x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3) + O(x^60)) \\ Colin Barker, Mar 27 2017 (PARI) a(n) = lcm(n+4, n)/gcd(n+4, n); \\ Altug Alkan, Sep 20 2018 (MAGMA) [LCM(n + 4, n)/GCD(n + 4, n): n in [1..50]]; // G. C. Greubel, Sep 20 2018 CROSSREFS Cf. A061037. [From R. J. Mathar, Sep 29 2008] Cf. A010873 Cf. A000466, A002378, A003185, A085027. Sequence in context: A248256 A049457 A061037 * A171621 A084183 A099730 Adjacent sequences:  A070259 A070260 A070261 * A070263 A070264 A070265 KEYWORD nonn,easy AUTHOR Amarnath Murthy, May 09 2002 EXTENSIONS Edited by Robert G. Wilson v, May 10 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 26 00:35 EDT 2019. Contains 326324 sequences. (Running on oeis4.)