|
|
A070256
|
|
Define P(n,X) by the recursion P(1,X)=1, P(n+1,X)=(P(n,X)+X)^2; then a(1)=0 and for n>1 a(n) is the coefficient of X^(2^(n-2)) in P(n,X) of degree 2^(n-1).
|
|
0
|
|
|
0, 2, 11, 207, 99919, 32416037103, 4788545326929179011183, 147201835861247697127798679336116306013028335, 196331785117316517420778884783875086749917195699904294273499082962835791812062775501401839
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is the greatest coefficient in P(n,X). Next term is too large to include.
|
|
LINKS
|
Table of n, a(n) for n=1..9.
|
|
FORMULA
|
for n>4 2^(2^n)<a(n)<(5/2)^(2^n)
|
|
EXAMPLE
|
P(1,X)=1 then P(2,X)=(1+X)^2=X^2+2X+1, the coefficient of X^(2^(2-2))=X is 2=a(2). P(4,X)=x^8+12*x^7+58*x^6+146*x^5+207*x^4+166*x^3+71*x^2+14*x+1 and the coefficient of X^(2^(4-2))=X^4 is 207=a(4).
|
|
PROG
|
(PARI) u=1; for(n=2, 6, a=(u+x)^2; u=a; print1(polcoeff(u, 2^(n-2), x), ", "))
|
|
CROSSREFS
|
Sequence in context: A271429 A051663 A188203 * A020450 A036229 A104337
Adjacent sequences: A070253 A070254 A070255 * A070257 A070258 A070259
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Benoit Cloitre, May 09 2002
|
|
STATUS
|
approved
|
|
|
|