login
Primes p such that (p^2)! and 2^(p^2)-1 are not relatively prime.
1

%I #21 Aug 28 2024 11:33:12

%S 2,3,11,23,29,37,43,73,79,83,113,131,151,179,191,197,211,223,233,239,

%T 251,263,283,317,337,359,367,397,419,431,443,461,463,487,491,499,547,

%U 557,571,577,593,601,617,619,641,659,683,719

%N Primes p such that (p^2)! and 2^(p^2)-1 are not relatively prime.

%C If q is an odd prime (p^2)! and q^(p^2)-1 are not relatively primes for any p prime.

%C Same as primes p where the smallest prime factor of M(p)=2^p-1 is less than p^2. - _William Hu_, Aug 18 2024

%H Robert Israel, <a href="/A070174/b070174.txt">Table of n, a(n) for n = 1..10000</a>

%p filter:= proc(p) local t,q,i;

%p if not isprime(p) then return false fi;

%p t:= 2^p-1;

%p igcd(t, convert(select(isprime,[seq(i,i=1..p^2,2*p)]),`*`)) <> 1

%p end proc:

%p filter(2):= true:

%p select(filter, [2,seq(i,i=3..1000,2)]); # _Robert Israel_, Aug 26 2024

%t Select[Prime[Range[130]],!CoprimeQ[(#^2)!,2^#^2-1]&] (* _Harvey P. Dale_, Jan 15 2022 *)

%o (PARI) forprime(n=1,263,if(gcd((n^2)!,2^(n^2)-1)>1,print1(n,",")))

%Y Cf. A069180.

%K easy,nonn

%O 1,1

%A _Benoit Cloitre_, May 06 2002

%E More terms from _Ralf Stephan_, Oct 14 2002