This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070088 Number of integer-sided triangles with perimeter n and prime sides. 14
 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 3, 0, 2, 0, 2, 0, 3, 1, 3, 0, 5, 1, 5, 0, 4, 0, 3, 0, 5, 1, 5, 0, 4, 0, 4, 0, 2, 0, 3, 0, 5, 1, 3, 0, 6, 1, 8, 0, 5, 0, 5, 0, 4, 0, 3, 0, 5, 1, 6, 0, 6, 0, 4, 0, 7, 1, 7, 0, 9, 1, 10, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,15 LINKS R. Zumkeller, Integer-sided triangles FORMULA a(n) = A070090(n) + A070092(n) = A070095(n) + A070103(n). a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * A010051(i) * A010051(k) * A010051(n-i-k). - Wesley Ivan Hurt, May 13 2019 EXAMPLE For n=15 there are A005044(15)=7 integer triangles: [1,7,7], [2,6,7], [3,5,7], [3,6,6], [4,4,7], [4,5,6] and [5,5,5]: two of them consist of primes, therefore a(15)=2. MATHEMATICA triangleQ[sides_] := With[{s = Total[sides]/2}, AllTrue[sides, # < s&]]; a[n_] := Select[IntegerPartitions[n, {3}, Select[Range[Ceiling[n/2]], PrimeQ]], triangleQ] // Length; Array[a, 90] (* Jean-François Alcover, Jul 09 2017 *) Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 13 2019 *) CROSSREFS Cf. A070080, A070081, A070082, A070090, A070092, A070095, A070097, A070100, A070103, A070105, A070108, A070111. Sequence in context: A143374 A277899 A283760 * A131851 A104886 A215604 Adjacent sequences:  A070085 A070086 A070087 * A070089 A070090 A070091 KEYWORD nonn AUTHOR Reinhard Zumkeller, May 05 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 11:26 EDT 2019. Contains 328108 sequences. (Running on oeis4.)