

A070043


Numbers of the form 6jk+j+k for positive integers j and k.


3



8, 15, 22, 28, 29, 36, 41, 43, 50, 54, 57, 60, 64, 67, 71, 78, 79, 80, 85, 92, 93, 98, 99, 104, 106, 113, 117, 119, 120, 127, 129, 132, 134, 136, 141, 145, 148, 154, 155, 158, 160, 162, 169, 171, 174, 176, 179, 183, 184, 190, 191, 193, 197, 204, 210, 211, 212
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Equivalently, numbers n such that 6n+1 has a nontrivial factor == 1 (mod 6).
These numbers, together with numbers of the form 6jkjk (A070799) are the numbers n for which 6n+1 is composite (A046954). If we also add in the numbers of the form 6jk+jk (A046953), we get the numbers n such that 6n1 and 6n+1 do not form a pair of twin primes (A067611).


LINKS

Table of n, a(n) for n=1..57.


EXAMPLE

41 = 6*2*3 + 2 + 3. Equivalently, 6*41+1 = (6*2+1)*(6*3+1).


MATHEMATICA

Select[Range[250], MemberQ[Mod[Take[Divisors[6#+1], {2, 2}], 6], 1]&]


CROSSREFS

Cf. A070799, A046953, A046954, A067611.
Sequence in context: A274290 A089025 A088977 * A003786 A008686 A003331
Adjacent sequences: A070040 A070041 A070042 * A070044 A070045 A070046


KEYWORD

nonn


AUTHOR

Jon Perry, May 05 2002


EXTENSIONS

Edited by Dean Hickerson and Vladeta Jovovic, May 07 2002


STATUS

approved



