|
|
A069995
|
|
Decimal expansion of the real positive solution to zeta(x)=x.
|
|
7
|
|
|
1, 8, 3, 3, 7, 7, 2, 6, 5, 1, 6, 8, 0, 2, 7, 1, 3, 9, 6, 2, 4, 5, 6, 4, 8, 5, 8, 9, 4, 4, 1, 5, 2, 3, 5, 9, 2, 1, 8, 0, 9, 7, 8, 5, 1, 8, 8, 0, 0, 9, 9, 3, 3, 3, 7, 1, 9, 4, 0, 3, 7, 5, 6, 0, 0, 9, 8, 0, 7, 2, 6, 7, 2, 0, 0, 5, 6, 8, 8, 1, 3, 9, 0, 3, 4, 7, 4, 3, 0, 9, 5, 9, 7, 5, 5, 4, 4, 3, 9, 1, 8, 0, 6, 6, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Fixed point of Riemann zeta function. - Michal Paulovic, Dec 31 2017
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..10000
David Rainford, Riemann zeta function: iteration of ζ and the significance of the value 1.83377..., Prime Patterns, 2015.
David Rainford, Hurwitz zeta function: iteration fractal example near a threshold, Prime Patterns, 2019. [observed effects of tangent to fixed-point curve]
|
|
EXAMPLE
|
1.83377265168027139624564858944152359218097851880099333719403756009807267200...
|
|
MATHEMATICA
|
RealDigits[ FindRoot[ Zeta[x] == x, {x, 2}, WorkingPrecision -> 2^7, AccuracyGoal -> 2^8, PrecisionGoal -> 2^7][[1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
|
|
PROG
|
(PARI) solve(x=1.5, 2, zeta(x)-x) \\ Michal Paulovic, Dec 31 2017
(Sage) (zeta(x)==x).find_root(1, 2, x) # G. C. Greubel, Apr 01 2019
|
|
CROSSREFS
|
Cf. A069857, A324859, A324860.
Sequence in context: A269296 A334363 A200230 * A199863 A181180 A271521
Adjacent sequences: A069992 A069993 A069994 * A069996 A069997 A069998
|
|
KEYWORD
|
cons,easy,nonn
|
|
AUTHOR
|
Benoit Cloitre, May 01 2002
|
|
EXTENSIONS
|
Corrected and extended by Michal Paulovic, Dec 31 2017
|
|
STATUS
|
approved
|
|
|
|