login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069995 Decimal expansion of the real positive solution to zeta(x)=x. 7
1, 8, 3, 3, 7, 7, 2, 6, 5, 1, 6, 8, 0, 2, 7, 1, 3, 9, 6, 2, 4, 5, 6, 4, 8, 5, 8, 9, 4, 4, 1, 5, 2, 3, 5, 9, 2, 1, 8, 0, 9, 7, 8, 5, 1, 8, 8, 0, 0, 9, 9, 3, 3, 3, 7, 1, 9, 4, 0, 3, 7, 5, 6, 0, 0, 9, 8, 0, 7, 2, 6, 7, 2, 0, 0, 5, 6, 8, 8, 1, 3, 9, 0, 3, 4, 7, 4, 3, 0, 9, 5, 9, 7, 5, 5, 4, 4, 3, 9, 1, 8, 0, 6, 6, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Fixed point of Riemann zeta function. - Michal Paulovic, Dec 31 2017

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

David Rainford, Riemann zeta function: iteration of ζ and the significance of the value 1.83377..., Prime Patterns, 2015.

David Rainford, Hurwitz zeta function: iteration fractal example near a threshold, Prime Patterns, 2019. [observed effects of tangent to fixed-point curve]

EXAMPLE

1.83377265168027139624564858944152359218097851880099333719403756009807267200...

MATHEMATICA

RealDigits[ FindRoot[ Zeta[x] == x, {x, 2}, WorkingPrecision -> 2^7, AccuracyGoal -> 2^8, PrecisionGoal -> 2^7][[1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)

PROG

(PARI) solve(x=1.5, 2, zeta(x)-x) \\ Michal Paulovic, Dec 31 2017

(Sage) (zeta(x)==x).find_root(1, 2, x) # G. C. Greubel, Apr 01 2019

CROSSREFS

Cf. A069857, A324859, A324860.

Sequence in context: A269296 A334363 A200230 * A199863 A181180 A271521

Adjacent sequences: A069992 A069993 A069994 * A069996 A069997 A069998

KEYWORD

cons,easy,nonn

AUTHOR

Benoit Cloitre, May 01 2002

EXTENSIONS

Corrected and extended by Michal Paulovic, Dec 31 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 30 22:45 EST 2023. Contains 359947 sequences. (Running on oeis4.)