login
A069947
Denominator of Sum_{k=1..n} k/phi(k).
2
1, 1, 2, 2, 4, 4, 12, 12, 12, 12, 60, 60, 10, 30, 120, 120, 240, 240, 720, 720, 720, 720, 7920, 7920, 7920, 7920, 7920, 7920, 55440, 55440, 11088, 11088, 55440, 55440, 55440, 55440, 18480, 55440, 55440, 55440, 55440, 55440, 55440, 11088, 11088, 11088, 255024, 255024
OFFSET
1,3
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter I, p. 29, section I.27.
LINKS
EXAMPLE
1, 3, 9/2, 13/2, 31/4, 43/4, 143/12, 167/12, 185/12, ...
MAPLE
map(denom, ListTools:-PartialSums([seq(n/numtheory:-phi(n), n=1..100)]));
# Robert Israel, May 01 2018
MATHEMATICA
Accumulate[Table[n/EulerPhi[n], {n, 50}]]//Denominator (* Harvey P. Dale, May 24 2021 *)
PROG
(PARI) a(n) = denominator(sum(k = 1, n, k/eulerphi(k))); \\ Amiram Eldar, Apr 25 2024
CROSSREFS
Cf. A068885 (numerators), A028415, A048049.
Sequence in context: A300218 A138317 A103659 * A051547 A330719 A095329
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jun 28 2002
STATUS
approved