This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069918 Number of ways of partitioning the set {1...n} into two subsets whose sums are as nearly equal as possible. 7
 1, 1, 1, 1, 3, 5, 4, 7, 23, 40, 35, 62, 221, 397, 361, 657, 2410, 4441, 4110, 7636, 28460, 53222, 49910, 93846, 353743, 668273, 632602, 1199892, 4559828, 8679280, 8273610, 15796439, 60400688, 115633260, 110826888, 212681976, 817175698, 1571588177, 1512776590 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS If n mod 4 = 0 or 3, a(n) is the number of solutions to +- 1 +- 2 +- 3 +- ... +- n = 0 or 1; if n mod 4 = 1 or 2, a(n) is half this number. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 S. R. Finch, Signum equations and extremal coefficients [broken link] Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author] Brian Hayes, The Easiest Hard Problem, American Scientist, Vol. 90, No. 2, March-April 2002, pp. 113-117. Recreational Mathematics Newsletter, Kolstad, PROBLEM 4: Subset Sums [broken link] Dave Rusin, More Number Theory [broken link] FORMULA If n mod 4 = 0 or 3 then the two subsets have the same sum and a(n)=A025591(n); if n mod 4 = 1 or 2 then the two subsets have sums which differ by 1 and a(n)=A025591(n)/2. - Henry Bottomley, May 08 2002 EXAMPLE If the triangular number T_n (see A000217) is even then the two totals must be equal, otherwise the two totals differ by one. a(6) = 5: T6 = 21 and is odd. There are five sets such that the sum of one side is equal to the other side +/- 1. They are 5+6 = 1+2+3+4, 4+6 = 1+2+3+5, 1+4+6 = 2+3+5, 1+3+6 = 2+4+5 and 2+3+6 = 1+4+5. MAPLE b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;       `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i), i-1) +b(n+i, i-1)))     end: a:= n-> `if`(irem(n-1, 4)<2, b(n-1, n-1) +b(n+1, n-1), b(n, n-1)): seq(a(n), n=1..60);  # Alois P. Heinz, Nov 02 2011 MATHEMATICA Needs["DiscreteMath`Combinatorica`"]; f[n_] := f[n] = Block[{s = Sort[Plus @@@ Subsets[n]], k = n(n + 1)/2}, If[ EvenQ[k], Count[s, k/2]/2, (Count[s, Floor[k/2]] + Count[s, Ceiling[k/2]]) /2]]; Table[ f[n], {n, 1, 22}] f[n_, s_] := f[n, s] = Which[n == 0, If[s == 0, 1, 0], Abs[s] > (n*(n + 1))/2, 0, True, f[n - 1, s - n] + f[n - 1, s + n]]; Table[ Which[ Mod[n, 4] == 0 || Mod[n, 4] == 3, f[n, 0]/2, Mod[n, 4] == 1 || Mod[n, 4] == 2, f[n, 1]], {n, 1, 40}] CROSSREFS Cf. A060005, A058377, A025591, A063865, A063866, A063867, A306443. Sequence in context: A082568 A242640 A210195 * A200700 A075380 A248497 Adjacent sequences:  A069915 A069916 A069917 * A069919 A069920 A069921 KEYWORD nonn AUTHOR Robert G. Wilson v, Apr 24 2002 EXTENSIONS More terms from Henry Bottomley, May 08 2002 Comment corrected by Steven Finch, Feb 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 22 13:47 EST 2019. Contains 329393 sequences. (Running on oeis4.)