login
Sum of (1+phi)-divisors of n (cf. A061389).
3

%I #19 Aug 15 2023 02:08:31

%S 1,3,4,3,6,12,8,7,4,18,12,12,14,24,24,11,18,12,20,18,32,36,24,28,6,42,

%T 13,24,30,72,32,31,48,54,48,12,38,60,56,42,42,96,44,36,24,72,48,44,8,

%U 18,72,42,54,39,72,56,80,90,60,72,62,96,32,35,84,144,68,54,96,144,72

%N Sum of (1+phi)-divisors of n (cf. A061389).

%H Reinhard Zumkeller, <a href="/A069915/b069915.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p^e) = 1+Sum_{k=1..e, gcd(k, e)=1} p^k.

%t a[1] = 1; a[p_?PrimeQ] = p + 1; a[n_] := Times @@ (1 + Sum[If[GCD[k, Last[#]] == 1, First[#]^k, 0], {k, 1, Last[#]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* _Jean-François Alcover_, May 04 2012 *)

%o (Haskell)

%o a069915 n = product $ zipWith sum_1phi (a027748_row n) (a124010_row n)

%o where sum_1phi p e = 1 + sum [p ^ k | k <- a038566_row e]

%o -- _Reinhard Zumkeller_, Mar 13 2012

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sum(k = 1, f[i, 2], (gcd(k, f[i, 2]) == 1) * f[i, 1]^k));} \\ _Amiram Eldar_, Aug 15 2023

%Y Cf. A061389.

%Y Cf. A027748, A124010, A038566, A051378.

%K mult,nonn

%O 1,2

%A _Vladeta Jovovic_, Apr 23 2002