%I #11 Nov 16 2018 22:41:30
%S 1,4,6,7,9,10,12,15,17,20,22,23,25,26,28,31,33,36,38,39,41,42,44,47,
%T 49,52,54,55,57,58,60,63,65,68,70,71,73,74,76,79,81,84,86,87,89,90,92,
%U 95,97,100,102,103,105,106,108,111,113,116,118,119,121
%N Numbers congruent to +-1, +-4, +-6, +-7 mod 16.
%D G. E. Andrews et al., q-Engel series expansions and Slater's identities, Quaestiones Math., 24 (2001), 403-416.
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,-1,2,-1).
%F G.f. x*(1+x)*(x^4+x^3-2*x^2+x+1) / ( (x^4+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
%F a(0)=1, a(1)=4, a(2)=6, a(3)=7, a(4)=9, a(5)=10, a(n)=2*a(n-1)-a(n-2)- a(n-4)+ 2*a(n-5)-a(n-6). - _Harvey P. Dale_, Sep 09 2012
%t Select[Range[130],MemberQ[{1,4,6,7,9,10,12,15},Mod[#,16]]&] (* or *) LinearRecurrence[{2,-1,0,-1,2,-1},{1,4,6,7,9,10},80] (* _Harvey P. Dale_, Sep 09 2012 *)
%Y Cf. A069908, A069910, A069911.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, May 05 2002