This is the output generated November 16 2016 by Antti Karttunen's
Python-program that compares a given sequence to all the sequences in
the stripped data file, with the criteria that if the given sequence
(in this case A069877) satisfies for any i,j:
   A069877(i) = A069877(j),
the matched sequence Amatch should also satisfy it for the same pair
of i and j:
   Amatch(i) = Amatch(j).
In other words, the matched sequence Amatch should have coarser, or at
least equally coarse equivalence classes as the given sequence.

Most of the following matches seem genuine, but of course a few false
positives might have sneaked in (or could eventually diverge). The
program might have listed even more matches, if it would not have been
required that the matched sequences should have at least four distinct
equivalence classes.  Note the periodicity of 9 or 11 of many confrac
and decimal expansions:

Searching matches for A069877 from seqs with at least 4 equivalence classes.
A069877 =>  A003132 Sum of squares of digits of n.
A069877 =>  A004092 Sum of digits of even numbers.
A069877 =>  A004155 Sum of digits of n-th odd number.
A069877 <=>  A004185 Arrange digits of n in increasing order, then (for n>0) omit the zeros.
A069877 =>  A007953 Digital sum (i.e., sum of digits) of n; also called digsum(n).
A069877 =>  A010145 Continued fraction for sqrt(61).
A069877 =>  A010168 Continued fraction for sqrt(97).
A069877 =>  A010172 Continued fraction for sqrt(106).
A069877 =>  A010178 Continued fraction for sqrt(113).
A069877 =>  A010196 Continued fraction for sqrt(137).
A069877 =>  A010202 Continued fraction for sqrt(149).
A069877 =>  A010878 a(n) = n mod 9.
A069877 =>  A010888 Digital root of n (repeatedly add the digits of n until a single digit is reached).
A069877 =>  A021058 Decimal expansion of 1/54.
A069877 =>  A021078 Decimal expansion of 1/74.
A069877 =>  A021085 Decimal expansion of 1/81.
A069877 =>  A021166 Decimal expansion of 1/162.
A069877 =>  A021409 Decimal expansion of 1/405.
A069877 =>  A033930 Base 10 digital convolution sequence.
A069877 =>  A035930 Maximal product of any two numbers whose concatenation is n.
A069877 =>  A035931 Number of steps to reach 0 under "k->max product of two numbers whose concatenation is k".
A069877 =>  A038139 Order of n (mod 9).
A069877 =>  A040217 Continued fraction for sqrt(233).
A069877 =>  A040248 Continued fraction for sqrt(265).
A069877 =>  A040280 Continued fraction for sqrt(298).
A069877 =>  A040299 Continued fraction for sqrt(317).
A069877 =>  A040369 Continued fraction for sqrt(389).
A069877 =>  A040470 Continued fraction for sqrt(493).
A069877 =>  A040530 Continued fraction for sqrt(554).
A069877 =>  A040585 Continued fraction for sqrt(610).
A069877 =>  A040671 Continued fraction for sqrt(698).
A069877 =>  A040726 Continued fraction for sqrt(754).
A069877 =>  A040729 Continued fraction for sqrt(757).
A069877 =>  A040745 Continued fraction for sqrt(773).
A069877 =>  A040765 Continued fraction for sqrt(794).
A069877 =>  A040768 Continued fraction for sqrt(797).
A069877 =>  A040938 Continued fraction for sqrt(970).
A069877 <=>  A045512 If decimal expansion of n is ab...d, a(n) = a^a + b^b + ... + d^d (ignoring any 0's).
A069877 =>  A045841 Number of distinct odd numbers formed from the digits of n.
A069877 =>  A047813 Largest palindromic substring of n.
A069877 =>  A051801 Product of the nonzero digits of n.
A069877 =>  A051802 Nonzero multiplicative digital root of n.
A069877 =>  A052484 Let P = all numbers that can be obtained by permuting the digits of n and possibly adding or omitting zeros; a(n) = |n-q| where q in P is the closest number to n different different from n (a(n)=0 if no such q exists).
A069877 =>  A052500 A052484 / 9.
A069877 =>  A053837 Sum of digits of n modulo 10.
A069877 =>  A054055 Largest digit of n.
A069877 <=>  A055012 Sum of cubes of the digits of n written in base 10.
A069877 <=>  A055013 Sum of 4th powers of digits of n.
A069877 <=>  A055014 Sum of 5th powers of digits of n.
A069877 <=>  A055015 Sum of 6th powers of digits of n.
A069877 =>  A056992 Digital roots of square numbers A000290.
A069877 =>  A057536 Minimal number of coins needed to pay n Euro-cents using the Euro currency.
A069877 =>  A061467 Remainder when the larger of n and its reverse is divided by the smaller.
A069877 =>  A061486 Let the number of digits in n be k; a(n) = sum of the products of the digits of n taken r at a time where r ranges from 1 to k.
A069877 =>  A061649 Smallest absolute value of a remainder when the larger of n and its reverse is divided by the smaller.
A069877 =>  A065137 Sum of digits of n plus sum of cubes of digits of n.
A069877 =>  A066459 Product of factorials of the digits of n.
A069877 =>  A069816 (Sum of digits of n)^2 - (sum of digits^2 of n).
A069877 <=>  A069939 1/3!*((Sum of digits of n)^3 + 3*(Sum of digits of n)*(Sum of digits^2 of n) + 2*(Sum of digits^3 of n)).
A069877 =>  A069940 (1/2)*((Sum of digits of n)^2 + (Sum of digits^2 of n)).
A069877 =>  A069958 (Sum of digits of n)^3 - (sum of digits^3 of n).
A069877 =>  A069964 (Sum of digits of n)^4 - (sum of digits^4 of n).
A069877 =>  A069965 (Sum of digits of n)^5 - (sum of digits^5 of n).
A069877 =>  A069966 (Sum of digits of n)^6 - (sum of digits^6 of n).
A069877 =>  A070373 a(n) = 5^n mod 19.
A069877 =>  A070385 a(n) = 5^n mod 38.
A069877 =>  A070395 a(n) = 6^n mod 19.
A069877 =>  A070412 a(n) = 7^n mod 27.
A069877 =>  A070420 a(n) = 7^n mod 37.
A069877 =>  A070433 a(n) = n^2 mod 9.
A069877 =>  A070434 a(n) = n^2 mod 11.
A069877 =>  A070455 a(n) = n^2 mod 33.
A069877 =>  A070489 a(n) = n^3 mod 27.
A069877 =>  A070513 a(n) = n^4 mod 9.
A069877 =>  A070515 a(n) = n^4 mod 11.
A069877 =>  A070576 n^4 mod 33.
A069877 =>  A070595 n^5 mod 9.
A069877 =>  A070634 n^6 mod 11.
A069877 =>  A070650 n^6 mod 27.
A069877 =>  A070656 n^6 mod 33.
A069877 =>  A070692 a(n) = n^7 mod 9.
A069877 =>  A075053 Number of primes (counted with repetition) that can be formed by rearranging some or all of the digits of n.
A069877 =>  A076160 Sod_4 - sod_3 + sod_2 - sod_1, where sod_k is the sum of k-th powers of digits of n.
A069877 =>  A076314 Floor(n/10) + (n mod 10).
A069877 =>  A076452 a(n+2) = abs(a(n+1)) - a(n), a(0)=0, a(1)=1.
A069877 =>  A076453 a(n+2) = abs(a(n+1)) - a(n), a(0)=1, a(1)=0.
A069877 =>  A078200 a(n) = A078199(n)/n; i.e. smallest k such that frequency of each occurring digit in k*n is the same.
A069877 =>  A078716 Sequence has period 9 and differences between successive terms are 4, -3, 4, -3, 4, -3, 4, -3, -4.
A069877 =>  A080463 Sum of the two numbers formed by alternate digits of n.
A069877 =>  A082504 Largest k such that the sum of sums of decimal digits of the next k numbers > n does not exceed 10.
A069877 =>  A083910 Number of divisors of n that are congruent to 0 modulo 10.
A069877 =>  A084066 Least integer coefficients of A(x), where 1<=a(n)<=11, such that A(x)^(1/11) consists entirely of integer coefficients.
A069877 =>  A084364 Define the operations M: multiply by 11, D: divide by 11, R: reverse digits. Sequence gives trajectory of 19 under action of M,R,D,R.
A069877 =>  A087079 Number of lunar partitions of n: number of ways of writing n as a lunar sum of distinct terms, ignoring order.
A069877 =>  A088116 Let n = abc..., where a, b, c, are digits of n. a(n) = a*bc...+b*ac...+c*ab...+..., i.e. a(n) = sum, over all the digits, of the product (number obtained by deleting a digit multiplied by the deleted digit).
A069877 =>  A089898 Product of (digits of n each incremented by 1).
A069877 =>  A093150 Absolute value of difference between (sum of digits of n if n odd, otherwise sum of digits of 2n) and (sum of digits of n if n even, otherwise sum of digits of 2n).
A069877 =>  A099917 Expansion of (1+x^2)^2/(1+x^3+x^6).
A069877 =>  A100406 a(n) = repeating period of the digital roots of the sequence {m^n, m=1,2,3...}.
A069877 =>  A100579 Numerator of the best rational approximation to the decimal representation of the digital roots of m^n, m=1,2,..
A069877 =>  A100601 Denominator of the best rational approximation to the decimal representation of the digital roots of m^n, m=1,2,..
A069877 =>  A101856 Number of non-intersecting polygons that it is possible for an accelerating ant to produce with n steps (rotations & reflections not included). On step 1 the ant moves forward 1 unit, then turns left or right and proceeds 2 units, then turns left or right until at the end of its n-th step it arrives back at its starting place.
A069877 =>  A101857 Number of possibly-self-intersecting walks that it is possible for an accelerating ant to produce with n steps (rotations & reflections not included). On step 1 the ant moves forward 1 unit, then turns left or right and proceeds 2 units, then turns left or right until at the end of its n-th step it arrives back at its starting place.
A069877 =>  A111889 A repeated permutation of {0,...,8}.
A069877 <=>  A113581 Define prime(0) = 1; then a(n) = product prime(d), where d ranges over all the decimal digits of n.
A069877 =>  A114611 Eventual period of the RATS sequence, where 0 indicates a divergent sequence.
A069877 =>  A117230 Start with 1 and repeatedly reverse the digits and add 1 to get the next term.
A069877 =>  A118295 Start with 20 and repeatedly reverse the digits and add 1 to get the next term.
A069877 =>  A118517 Define sequence S_m by: initial term = m, reverse digits and add 3 to get next term. Entry shows S_1. This reaches a cycle of length 3 in 1 step.
A069877 =>  A118528 Start with 1 and repeatedly reverse the digits and add 11 to get the next term.
A069877 =>  A118613 Start with 1 and repeatedly reverse the digits and add 27 to get the next term.
A069877 =>  A118617 Start with 1 and repeatedly reverse the digits and add 31 to get the next term.
A069877 =>  A118619 Start with 1 and repeatedly reverse the digits and add 33 to get the next term.
A069877 =>  A118856 Start with 1 and repeatedly place the first digit at the end of the number and add 13.
A069877 =>  A118864 Start with 1 and repeatedly place the first digit at the end of the number and add 17.
A069877 =>  A118880 Cube numbers equal to sum of decimal digits of n.
A069877 =>  A118881 Square of sum of decimal digits of n.
A069877 =>  A119281 Number of counting rods to represent n in the ancient Chinese rod numeral system.
A069877 <=>  A123253 Sum of 7th powers of digits of n.
A069877 =>  A128244 Let be s the sum of the digits of n; a(n) is the product of the digits of s.
A069877 =>  A131650 Number of symbols in Babylonian numeral representation of n.
A069877 =>  A131669 Odd digits followed by positive even digits.
A069877 =>  A133292 Period 9: repeat 1, 1, 2, 4, 7, 2, 7, 4, 2.
A069877 =>  A133293 First differences of A133292.
A069877 =>  A134011 Period 9: repeat [1, 2, 3, 4, 5, 4, 3, 2, 1].
A069877 =>  A134017 Period 9: repeat 1, 2, 4, 3, 5, 3, 4, 2, 1.
A069877 =>  A134029 Period 9: repeat 3, 2, 4, 1, 5, 1, 4, 2, 3.
A069877 =>  A134777 First digit of n alphabetically.
A069877 =>  A134804 Remainder of triangular number A000217(n) modulo 9.
A069877 =>  A136614 Sum of digits of A108773 and of A136613.
A069877 =>  A138531 Decimal expansion of 109739369/111111111.
A069877 =>  A141726 Sawtooth with period length 9: repeat 8, 7, 6, 5, 4, 3, 2, 1, 0.
A069877 =>  A142069 Period length 9: repeat 3, 7, 2, 6, 1, 5, 0, 4, 8 .
A069877 =>  A144478 Period 9: repeat 1,0,5,7,6,2,4,3,8.
A069877 =>  A144481 A078371(n-1) mod 9.
A069877 =>  A144483 A144481(4n-3).
A069877 =>  A145389 Digital roots of triangular numbers.
A069877 =>  A145577 A045944 mod 9. Period 9: repeat 0,5,7,6,2,4,3,8,1.
A069877 =>  A145594 A145593(n) mod 9.
A069877 =>  A146079 Period 9: repeat 2,4,8,5,4,5,8,4,2.
A069877 =>  A146082 a(n) = A146081(n) mod 9.
A069877 =>  A152179 (n^2-2=A008865) mod 9. Period 9:repeat 8,2,7,5,5,7,2,8,7.
A069877 =>  A153211 Sum of digits of n, times digital reversal of sum of digits of n.
A069877 =>  A165330 Result of repeatedly replacing a number by the sum of the cubes of its digits until a fixed point or cycle is reached.
A069877 =>  A167373 Expansion of (1+x)*(3*x+1)/(1+x+x^2).
A069877 =>  A167420 2^n mod 14.
A069877 =>  A169805 Twice the sum of the digits of n.
A069877 =>  A171677 Period 9:repeat 7,5,7,4,2,4,1,8,1.
A069877 =>  A171765 a(n) = 0 if n <= 10; for n >= 11, a(n) = product of digits of n.
A069877 =>  A175674 a(n) = smallest integer m>=0 such that sum of digits of n and m is >=10.
A069877 =>  A177274 Periodic sequence: Repeat 1, 2, 3, 4, 5, 6, 7, 8, 9.
A069877 =>  A180592 Digital root of 2n.
A069877 =>  A180593 Digital root of 3n.
A069877 =>  A180594 Digital root of 4n.
A069877 =>  A180595 Digital root of 5n.
A069877 =>  A180596 Digital root of 6n.
A069877 =>  A180597 Digital root of 7n.
A069877 =>  A180598 Digital root of 8n.
A069877 =>  A187532 4^n mod 19.
A069877 =>  A191760 Digital root of the n-th odd square.
A069877 =>  A191762 Digital roots of the nonzero even squares.
A069877 =>  A193090 Digital roots of the nonzero pentagonal numbers.
A069877 =>  A194597 Digital roots of the nonzero hexagonal numbers.
A069877 =>  A194641 Digital roots of the nonzero heptagonal numbers.
A069877 =>  A194731 Digital roots of the nonzero octagonal numbers.
A069877 =>  A194825 Digital roots of the nonzero 9-gonal (nonagonal) numbers.
A069877 =>  A209685 Sum of last two digits of n.
A069877 =>  A210621 Decimal expansion of 256/81.
A069877 <=>  A210840 Sum of the 8th powers of the digits of n.
A069877 =>  A214949 Numerator of sum of reciprocals of all nonzero digits of n in decimal representation; denominators: A214950.
A069877 =>  A214950 Denominator of sum of reciprocals of all nonzero digits of n in decimal representation; sumerators: A214949.
A069877 =>  A216407 Sum of decimal digits not appearing in n.
A069877 =>  A217928 Sum of distinct decimal digits appearing in n.
A069877 =>  A224317 a(n) = a(n-1) + 3 - a(n-1)!.
A069877 =>  A225416 Number of iterations of the map n -> f(n) needed to reach 0 and starting with n, where f(n) is given by the following definition: f(n) = u(n) mod v(n) where u(n) = max (n, reverse(n)) and v(n) = min(n, reverse(n)).
A069877 =>  A241494 Pyramid Top Numbers: write the decimal digits of 'n' (a nonnegative integer) and take successive absolute differences ("pyramidalization"). The number at the top of the pyramid is 'a(n)'.
A069877 =>  A245574 Minimal coin changing sequence for denominations 1, 2, 5, 10, 20 and 50 cents.
A069877 =>  A245627 Base 10 digit sum of 11*n.
A069877 =>  A251754 Digital root of A027444(n) = n + n^2 + n^3, n>=1. Repeat(3, 5, 3, 3, 2, 6, 3, 8, 9).
A069877 =>  A251755 Digital root of n + n^2.
A069877 =>  A251780 Digital root of A069778(n-1) = n^3 - n^2 + 1, n >= 1. Repeat(1, 6, 3, 7, 6, 6, 4, 6, 9).
A069877 =>  A254373 Digital roots of centered square numbers (A001844).
A069877 =>  A254374 Digital roots of centered pentagonal numbers (A005891).
A069877 =>  A254375 Digital roots of centered heptagonal numbers (A069099).
A069877 =>  A256676 Digital roots of centered 11-gonal numbers (A069125).
A069877 =>  A257297 a(n) = (initial digit of n) * (n with initial digit removed).
A069877 =>  A257588 If n = abcd... in decimal, a(n) = |a^2-b^2+c^2-d^2+...|.
A069877 =>  A257850 a(n) = floor(n/10) * (n mod 10).
A069877 =>  A261527 Irregular triangular array giving minimum number of reciprocal steps in the boomerang fractions process needed to return to 1 if a returning path exists, otherwise 0.
A069877 =>  A264600 Let S_n denote the list of decimal numbers 0 to n, written backwards (allowing leading zeros) and arranged in lexicographic order; a(n) = position where backwards-n appears, starting indexing at 0.
A069877 =>  A267017 Digital roots of the stella octangula numbers.
A069877 =>  A268315 Decimal expansion of 256/27.
A069877 =>  A269221 Factorial of the sum of decimal digits of n.
A069877 =>  A275704 Digital root of n + (n+1)^2.
A069877 =>  A277342 Base-100 digital root of n (equivalent to repeatedly adding pairs of decimal digits starting from the least significant pair).
A069877: total of 195 suspected matching sequences were found.

The same search done after skipping the term a(0)=1 of A069877:

Searching matches for A069877from1 from seqs with at least 4 equivalence classes.
A069877from1 =>  A006968 Number of letters in Roman numeral representation of n.
A069877from1 =>  A010878 a(n) = n mod 9.
A069877from1 =>  A021085 Decimal expansion of 1/81.
A069877from1 =>  A030076 a(n) = 10 - m, where m = maximal digit of n.
A069877from1 =>  A031186 Periods of sum of 5th powers of digits iterated until the sequence becomes periodic.
A069877from1 =>  A031195 Periods of sum of 6th powers of digits iterated until the sequence becomes periodic.
A069877from1 =>  A031200 Periods of sum of 7th powers of digits iterated until the sequence becomes periodic.
A069877from1 =>  A031212 Periods of sum of 9th powers of digits iterated until the sequence becomes periodic.
A069877from1 =>  A031213 Periods of sum of 10th powers of digits iterated until the sequence becomes periodic.
A069877from1 =>  A038139 Order of n (mod 9).
A069877from1 =>  A039993 Number of different primes embedded in n.
A069877from1 =>  A040997 Absolute value between digits of n (version 3).
A069877from1 =>  A052423 Highest common factor of nonzero digits of n.
A069877from1 =>  A052429 Lowest common multiple of nonzero digits of n.
A069877from1 =>  A055483 GCD of n and the reverse of n.
A069877from1 =>  A056992 Digital roots of square numbers A000290.
A069877from1 =>  A057226 Number of different symbols needed to express n as a Roman numeral.
A069877from1 =>  A061510 Write n in decimal, omit 0's, raise each digit k to k-th power and multiply.
A069877from1 =>  A062331 Product of the sum and the product of the digits of n (0 is not to be considered a factor in the product).
A069877from1 =>  A065518 Denominator of n/(sum of the digits of n).
A069877from1 =>  A066750 Greatest common divisor of n and its digit sum.
A069877from1 =>  A067453 a(n) = binomial(a,b) where a>=b and one of a and b is the product of the nonzero decimal digits of n and the other is the sum of the decimal digits of n.
A069877from1 =>  A067456 Floor( sqrt( sum of the decimal digits of n squared)).
A069877from1 <=>  A068636 a(n) = Min(n, R(n)), where R(n) (A004086) = digit reversal of n.
A069877from1 =>  A069652 GCD of all the numbers obtained by permuting the digits of n.
A069877from1 <=>  A069877 Smallest number with a prime signature whose indices are the decimal digits of n.
A069877from1 =>  A070373 a(n) = 5^n mod 19.
A069877from1 =>  A070385 a(n) = 5^n mod 38.
A069877from1 =>  A070395 a(n) = 6^n mod 19.
A069877from1 =>  A070412 a(n) = 7^n mod 27.
A069877from1 =>  A070420 a(n) = 7^n mod 37.
A069877from1 =>  A070433 a(n) = n^2 mod 9.
A069877from1 =>  A070489 a(n) = n^3 mod 27.
A069877from1 =>  A070513 a(n) = n^4 mod 9.
A069877from1 =>  A070595 n^5 mod 9.
A069877from1 =>  A070650 n^6 mod 27.
A069877from1 =>  A070692 a(n) = n^7 mod 9.
A069877from1 =>  A071648 Sum of even decimal digits of n.
A069877from1 =>  A071649 Sum of odd decimal digits of n.
A069877from1 =>  A071650 Difference between sums of odd and even digits of n.
A069877from1 =>  A074871 Start with n and repeatedly apply the map k -> T(k) = A053837(k) + A171765(k); a(n) is the number of steps (at least one) until a prime is reached, or 0 if no prime is ever reached.
A069877from1 =>  A076452 a(n+2) = abs(a(n+1)) - a(n), a(0)=0, a(1)=1.
A069877from1 =>  A076453 a(n+2) = abs(a(n+1)) - a(n), a(0)=1, a(1)=0.
A069877from1 =>  A077252 Sum of digits squared minus sum of digits of n.
A069877from1 =>  A077253 Sum of digits squared plus sum of digits of n.
A069877from1 =>  A078716 Sequence has period 9 and differences between successive terms are 4, -3, 4, -3, 4, -3, 4, -3, -4.
A069877from1 =>  A082504 Largest k such that the sum of sums of decimal digits of the next k numbers > n does not exceed 10.
A069877from1 =>  A083344 a(n)=A082457(n)-A066715(n)= GCD[2n+1, A057643(2n+1)]-GCD[2n+1, A000203(2n+1)].
A069877from1 =>  A084364 Define the operations M: multiply by 11, D: divide by 11, R: reverse digits. Sequence gives trajectory of 19 under action of M,R,D,R.
A069877from1 =>  A085562 Sum of the nonprime digits of n.
A069877from1 =>  A085563 Sum of the prime digits of n.
A069877from1 =>  A088117 Let the decimal expansion of n be abcd...; then a(n) = {a*bcd... + b*acd... + c*abc... + ...} + {ab*cd} + ... . That is, a(n)=sum over all the digit strings of the product (number obtained by deleting a digit string) * (deleted digit string).
A069877from1 =>  A088118 Duplicate of A088117.
A069877from1 =>  A092196 Number of letters in "old style" Roman numeral representation of n (e.g., IIII rather than IV).
A069877from1 =>  A092197 Brevity advantage of "new style" over "old style" Roman numerals.
A069877from1 =>  A099917 Expansion of (1+x^2)^2/(1+x^3+x^6).
A069877from1 =>  A100406 a(n) = repeating period of the digital roots of the sequence {m^n, m=1,2,3...}.
A069877from1 =>  A100579 Numerator of the best rational approximation to the decimal representation of the digital roots of m^n, m=1,2,..
A069877from1 =>  A100601 Denominator of the best rational approximation to the decimal representation of the digital roots of m^n, m=1,2,..
A069877from1 =>  A101856 Number of non-intersecting polygons that it is possible for an accelerating ant to produce with n steps (rotations & reflections not included). On step 1 the ant moves forward 1 unit, then turns left or right and proceeds 2 units, then turns left or right until at the end of its n-th step it arrives back at its starting place.
A069877from1 =>  A101857 Number of possibly-self-intersecting walks that it is possible for an accelerating ant to produce with n steps (rotations & reflections not included). On step 1 the ant moves forward 1 unit, then turns left or right and proceeds 2 units, then turns left or right until at the end of its n-th step it arrives back at its starting place.
A069877from1 =>  A101991 Largest prime which can be formed from digits of n, or 0 if no prime exists.
A069877from1 =>  A109848 Highest common factor of n and its 9's complement.
A069877from1 =>  A111633 Let n = abc...xyz denote the decimal digits of n. Then a(n) = C(a,z)+C(b,y)+C(c,x)+...+C(x,c)+C(y,b)+C(z,a).
A069877from1 =>  A111889 A repeated permutation of {0,...,8}.
A069877from1 =>  A113589 A complementary variation of 'n described': if n is read as "a ones b twos" then a(n) = "one a's two b's", etc.
A069877from1 =>  A114611 Eventual period of the RATS sequence, where 0 indicates a divergent sequence.
A069877from1 =>  A128244 Let be s the sum of the digits of n; a(n) is the product of the digits of s.
A069877from1 =>  A131650 Number of symbols in Babylonian numeral representation of n.
A069877from1 =>  A131669 Odd digits followed by positive even digits.
A069877from1 =>  A133292 Period 9: repeat 1, 1, 2, 4, 7, 2, 7, 4, 2.
A069877from1 =>  A133293 First differences of A133292.
A069877from1 =>  A134011 Period 9: repeat [1, 2, 3, 4, 5, 4, 3, 2, 1].
A069877from1 =>  A134017 Period 9: repeat 1, 2, 4, 3, 5, 3, 4, 2, 1.
A069877from1 =>  A134029 Period 9: repeat 3, 2, 4, 1, 5, 1, 4, 2, 3.
A069877from1 =>  A134804 Remainder of triangular number A000217(n) modulo 9.
A069877from1 =>  A137424 a(n)=C{Sum_digits(n),[n mod Sum_digits(n)]}, n>=1.
A069877from1 =>  A138531 Decimal expansion of 109739369/111111111.
A069877from1 =>  A141726 Sawtooth with period length 9: repeat 8, 7, 6, 5, 4, 3, 2, 1, 0.
A069877from1 =>  A142069 Period length 9: repeat 3, 7, 2, 6, 1, 5, 0, 4, 8 .
A069877from1 =>  A144478 Period 9: repeat 1,0,5,7,6,2,4,3,8.
A069877from1 =>  A144481 A078371(n-1) mod 9.
A069877from1 =>  A144483 A144481(4n-3).
A069877from1 =>  A145577 A045944 mod 9. Period 9: repeat 0,5,7,6,2,4,3,8,1.
A069877from1 =>  A145594 A145593(n) mod 9.
A069877from1 =>  A146079 Period 9: repeat 2,4,8,5,4,5,8,4,2.
A069877from1 =>  A146082 a(n) = A146081(n) mod 9.
A069877from1 =>  A152179 (n^2-2=A008865) mod 9. Period 9:repeat 8,2,7,5,5,7,2,8,7.
A069877from1 =>  A153211 Sum of digits of n, times digital reversal of sum of digits of n.
A069877from1 =>  A171250 Row lengths of A082381: number of iterations of "sum of digits squared" until 1 or 4 is reached.
A069877from1 =>  A171677 Period 9:repeat 7,5,7,4,2,4,1,8,1.
A069877from1 =>  A173453 a(n) = A160121(n) - A151710(n).
A069877from1 =>  A177274 Periodic sequence: Repeat 1, 2, 3, 4, 5, 6, 7, 8, 9.
A069877from1 =>  A180410 Unique digits used in n in numerical order
A069877from1 =>  A182111 Number of iterations of the map n -> sum of the cubes of the decimal digits of n.
A069877from1 =>  A187532 4^n mod 19.
A069877from1 =>  A190727 Product of (digits of n each incremented by 1) - 2.
A069877from1 =>  A191760 Digital root of the n-th odd square.
A069877from1 =>  A191762 Digital roots of the nonzero even squares.
A069877from1 =>  A193090 Digital roots of the nonzero pentagonal numbers.
A069877from1 =>  A194597 Digital roots of the nonzero hexagonal numbers.
A069877from1 =>  A194641 Digital roots of the nonzero heptagonal numbers.
A069877from1 =>  A194731 Digital roots of the nonzero octagonal numbers.
A069877from1 =>  A194825 Digital roots of the nonzero 9-gonal (nonagonal) numbers.
A069877from1 =>  A214301 Smallest limiting value of n under iteration of "Sum of its digits raised to its digits power" (A045512).
A069877from1 =>  A231472 Largest integer less than 12 and coprime to n.
A069877from1 =>  A245359 Largest number k such that d_1^j + d_2^j + … + d_r^j is prime for all j = 1, 2, .. k, or 0 if no such k exists, where d_1, d_2, … d_r are the digits of n. a(n) = -1 if k is infinite.
A069877from1 =>  A251754 Digital root of A027444(n) = n + n^2 + n^3, n>=1. Repeat(3, 5, 3, 3, 2, 6, 3, 8, 9).
A069877from1 =>  A251780 Digital root of A069778(n-1) = n^3 - n^2 + 1, n >= 1. Repeat(1, 6, 3, 7, 6, 6, 4, 6, 9).
A069877from1 =>  A254373 Digital roots of centered square numbers (A001844).
A069877from1 =>  A254374 Digital roots of centered pentagonal numbers (A005891).
A069877from1 =>  A254375 Digital roots of centered heptagonal numbers (A069099).
A069877from1 =>  A256676 Digital roots of centered 11-gonal numbers (A069125).
A069877from1 =>  A257796 Smallest value of the loop in which n ends, when iterating the map (A257588) which sends a number to absolute value of first digit squared minus second digit squared plus third digit squared etc.
A069877from1 =>  A267238 Sum of the triangular numbers whose indices are the digits of n.
A069877from1 =>  A275704 Digital root of n + (n+1)^2.
A069877from1: total of 116 suspected matching sequences were found.