login
A069825
Numbers n such that there is no x < n such that sigma(x) = phi(n).
3
1, 3, 4, 6, 11, 17, 22, 23, 32, 34, 40, 46, 47, 48, 53, 59, 60, 67, 71, 83, 85, 89, 94, 101, 106, 107, 115, 118, 125, 128, 131, 134, 136, 137, 141, 142, 149, 160, 166, 167, 170, 173, 177, 178, 179, 184, 188, 191, 192, 197, 202, 204, 214, 227, 230, 233, 235, 236
OFFSET
1,2
LINKS
MAPLE
with(numtheory): A069825 := proc(n) local p, i; p := phi(n); for i from 1 to n-1 do if sigma(i) = p then RETURN(NULL) fi od; n end; # Peter Luschny, Nov 02 2010
# Alternative:
N:= 1000: # to get terms <= N
R:= Vector(N):
for k from 1 to N-1 do
s:= numtheory:-sigma(k);
if s <= N and R[s] = 0 then R[s]:= k fi;
od:
1, op(select(t -> R[numtheory:-phi(t)]=0, [$2..N])); # Robert Israel, Aug 25 2017
MATHEMATICA
okQ[n_] := NoneTrue[Range[n-1], DivisorSigma[1, #] == EulerPhi[n]&];
Select[Range[250], okQ] (* Jean-François Alcover, Jun 03 2019 *)
PROG
(PARI) for(n=1, 600, if(abs(prod(i=1, n-1, eulerphi(n)-sigma(i)))>0, print1(n, ", ")))
CROSSREFS
Sequence in context: A154331 A001130 A348529 * A093040 A022935 A374762
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 28 2002
STATUS
approved