login
A069818
Let x = 1.757739951145463... be smallest real number that satisfies gcd(floor(x^m),m)=1 for all integers m>0; sequence gives floor(x^n).
0
1, 3, 5, 9, 16, 29, 51, 91, 160, 281, 494, 869, 1529, 2687, 4724, 8303, 14595, 25655, 45095, 79267, 139330, 244907, 430483, 756677, 1330042, 2337869, 4109366, 7223197, 12696502, 22317149, 39227744, 68952173, 121199990, 213038065
OFFSET
1,2
COMMENTS
If some z satisfies the condition gcd(floor(z^n),n)=1, then all positive powers of z also satisfy the condition. There are an infinite number of reals satisfying this condition; the value given here is the smallest such solution.
FORMULA
Floor(x^n), x=1.757739951145463 approximately.
EXAMPLE
gcd(floor(x^10),10) = gcd(281,10) = 1; the floor of even powers of x is always odd.
CROSSREFS
Sequence in context: A018159 A094980 A295060 * A227233 A054180 A188223
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 29 2002
STATUS
approved