|
|
A069781
|
|
Numbers n such that GCD[d(n^3), d(n)] is not a power of 2.
|
|
4
|
|
|
432, 576, 648, 1600, 2000, 2160, 2880, 2916, 3024, 3136, 3240, 4032, 4536, 4752, 4800, 5000, 5488, 5616, 6000, 6336, 7128, 7344, 7488, 7744, 8208, 8424, 9408, 9792, 9936, 10125, 10800, 10816, 10944, 11016, 11200, 12312, 12528, 13248, 13392
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The complement of this sequence in the positive integers A000027 is A069782. - M. F. Hasler, Jan 18 2015
|
|
LINKS
|
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
Log [2, GCD[A000005(n^3), A000005(n)]] is nonintegral.
|
|
EXAMPLE
|
For n<100000,GCD[d(n^3),d[n]]={5,7,10,14,20,28,40,80} which is obtained for n={20736,576,432,2880,54000,20160,2160,15120} respectively.
|
|
MATHEMATICA
|
f[x_] := GCD[DivisorSigma[0, x^3], DivisorSigma[0, x]] Do[s=f[n]; If[ !IntegerQ[Log[2, s]], Print[n]], {n, 1, 100000}]
Select[Range[14000], !IntegerQ[Log[2, GCD[DivisorSigma[0, #^3], DivisorSigma[ 0, #]]]]&] (* Harvey P. Dale, Mar 20 2018 *)
|
|
PROG
|
(PARI) is(n)=my(f=factor(n)[, 2], g=gcd(prod(i=1, #f, 3*f[i]+1), prod(i=1, #f, f[i]+1))); g!=1<<valuation(g, 2) \\ Charles R Greathouse IV, Oct 16 2015
|
|
CROSSREFS
|
Cf. A000005, A061701, A037992, A069780, A069782.
Sequence in context: A205192 A066419 A245469 * A231231 A179666 A203663
Adjacent sequences: A069778 A069779 A069780 * A069782 A069783 A069784
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Apr 08 2002
|
|
STATUS
|
approved
|
|
|
|