OFFSET
2,1
COMMENTS
The Frobenius number of the numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Any three successive triangular numbers are relatively prime, so they generate a numerical semigroup with a Frobenius number.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 2..1000
R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
Aureliano M. Robles-Pérez, José Carlos Rosales, The Frobenius number for sequences of triangular and tetrahedral numbers, arXiv:1706.04378 [math.NT], 2017.
FORMULA
Conjectures from Colin Barker, Nov 22 2012: (Start)
a(n) = (-14 + 6*(-1)^n + (3+9*(-1)^n)*n + 3*(5+(-1)^n)*n^2 + 6*n^3)/8.
G.f.: x^2*(17 + 12*x + 9*x^2 - 3*x^4 + x^6) / ((1 - x)^4*(1 + x)^3). (End)
Conjectures from Colin Barker, Mar 21 2017: (Start)
a(n) = (6*n^3 + 18*n^2 + 12*n - 8)/8 for n even.
a(n) = (6*n^3 + 12*n^2 - 6*n - 20)/8 for n odd. (End)
EXAMPLE
a(2)=17 because 17 is not a nonnegative linear combination of 3, 6 and 10 but all numbers greater than 17 are.
MATHEMATICA
tri=Range[40]Range[2, 41]/2; Table[t=CoefficientList[Series[1/(1-x^tri[[n]])/(1-x^tri[[n+1]])/(1-x^tri[[n+2]]), {x, 0, n(n+1)(n+2)}], x]; Last[Position[t, 0]-1][[1]], {n, 2, 33}] (* T. D. Noe, Nov 27 2006 *)
Rest[FrobeniusNumber/@Partition[Accumulate[Range[50]], 3, 1]] (* Harvey P. Dale, Oct 04 2011 *)
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 05 2002
EXTENSIONS
Corrected by T. D. Noe, Nov 27 2006
STATUS
approved