The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069720 a(n) = 2^(n-1)*binomial(2n-1, n). 23
 1, 6, 40, 280, 2016, 14784, 109824, 823680, 6223360, 47297536, 361181184, 2769055744, 21300428800, 164317593600, 1270722723840, 9848101109760, 76467608616960, 594748067020800, 4632774416793600, 36135640450990080, 282202144474398720, 2206307674981662720, 17266755717247795200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Number of rooted unicursal planar maps with n edges (unicursal means that exactly two nodes are of odd valency; there is an Eulerian path). a(n) = A000079(n-1) * A001700(n-1); for n > 1: a(n) = 2*A082143(n-1). - Reinhard Zumkeller, Jan 15 2015 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 H. J. Brothers, Pascal's Prism: Supplementary Material. V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221. Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017): 3081-3091. FORMULA a(n) = 2^(n-2)*binomial(2n, n). G.f.: (1-sqrt(1-8x))/(4x*sqrt(1-8x)) = 2/(sqrt(1-8x)(1-sqrt(1-8x)))-1/(2x). - Paul Barry, Sep 06 2004 D-finite with recurrence n*a(n) + 4*(1-2n)*a(n-1) = 0. - R. J. Mathar, Apr 01 2012 E.g.f.: a(n) = n! * [x^n] (exp(4*x)*BesselI(0, 4*x) - 1)/4. - Peter Luschny, Aug 25 2012 MAPLE Z:=(1-sqrt(1-2*z))*4^(n-1)/sqrt(1-2*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..20); # Zerinvary Lajos, Jan 01 2007 MATHEMATICA Table[2^(n-1) Binomial[2n-1, n], {n, 20}] (* Harvey P. Dale, Jan 20 2013 *) PROG (Haskell) a069720 n = (a000079 \$ n - 1) * (a001700 \$ n - 1) -- Reinhard Zumkeller, Jan 15 2015 (PARI) a(n) = binomial(2*n-1, n)<<(n-1) \\ Charles R Greathouse IV, Feb 06 2017 (MAGMA) [2^(n-2)*Binomial(2*n, n): n in [1..25]]; // Vincenzo Librandi, Apr 14 2018 CROSSREFS First superdiagonal of number array A082137. Cf. A069724, A003584, A069723, A082143, A000079, A001700. Sequence in context: A122471 A178397 A090041 * A005037 A081337 A316912 Adjacent sequences:  A069717 A069718 A069719 * A069721 A069722 A069723 KEYWORD easy,nice,nonn AUTHOR Valery A. Liskovets, Apr 07 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 15 18:16 EST 2021. Contains 340188 sequences. (Running on oeis4.)