OFFSET
1,1
COMMENTS
The sum of the digits of a prime > 3 cannot be a multiple of 3, hence no prime with 3*k digits can be here. - David Radcliffe, May 05 2015
Subsequence of primes of A061384. - Michel Marcus, May 05 2015
LINKS
David Radcliffe, Table of n, a(n) for n = 1..13376
MAPLE
F:= proc(d, s) option remember;
local t, r;
if d = 1 then
if s >= 1 and s <= 9 then {s}
else {}
fi
else
`union`(seq(map(t -> 10*t+r, procname(d-1, s-r)), r=0..min(s, 9)))
fi
end proc:
`union`(seq(select(isprime, F(i, i)), i = remove(d -> d mod 3 = 0, [$1..8]));
# if using Maple 11 or earlier, uncomment the next line
# sort(convert(%, list)); # Robert Israel, May 05 2015
MATHEMATICA
Do[p = Prime[n]; If[ Apply[ Plus, IntegerDigits[p]] == Floor[ Log[10, p] + 1], Print[p]], {n, 1, 10^5}]
PROG
(Python)
from itertools import count, islice
from collections import Counter
from sympy.utilities.iterables import partitions, multiset_permutations
from sympy import isprime
def A069710_gen(): # generator of terms
for l in count(1):
for i in range(1, min(9, l)+1):
yield from sorted(q for q in (int(str(i)+''.join(map(str, j))) for s, p in partitions(l-i, k=9, size=True) for j in multiset_permutations([0]*(l-1-s)+list(Counter(p).elements()))) if isprime(q))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, Apr 08 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Apr 12 2002
STATUS
approved