|
|
A069480
|
|
Determinant of rank n matrix of 1..n^2 filled successively along antidiagonals.
|
|
4
|
|
|
1, -2, -5, 6, 13, -12, -25, 20, 41, -30, -61, 42, 85, -56, -113, 72, 145, -90, -181, 110, 221, -132, -265, 156, 313, -182, -365, 210, 421, -240, -481, 272, 545, -306, -613, 342, 685, -380, -761, 420, 841, -462, -925, 506, 1013, -552, -1105, 600, 1201, -650, -1301, 702, 1405, -756, -1513
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The sorted absolute values of this sequence begin: 1, 2, 5, 6, 12, 13, 20, 25, 30, 41, 42, 56, 61, 72, 85, 90, 110, 113, 132, 145, 156, 181, 182,
|
|
REFERENCES
|
On comp.soft-sys.math.mathematica (Mar 20 2002) Mark R. Diamond asked for a nice way to generate matrices 'along the diagonals' of the form (see example). The coding is from Wouter Meeussen.
|
|
LINKS
|
Table of n, a(n) for n=1..55.
|
|
FORMULA
|
a(n) = n*(n+2)/4, n = 0 mod 4; (n^2+1)/2, n = 1 mod 4; -n*(n+2)/4, n = 2 mod 4; -(n^2+1)/2, n = 3 mod 4;
G.f.: x*(x^4 - 2*x^2 - 2*x + 1) / (x^2 + 1)^3.
|
|
EXAMPLE
|
a(4) = 6 = 4*6/4 = |1 3 6 10 | 2 5 9 13 | 4 8 12 15 | 7 11 14 16|.
|
|
MATHEMATICA
|
f[n_] := Table[(i + j - 1)((i + j - 1) - 1)/2 + 1 + (j - 1) - Mod[i + j - 1, n, 1]^2 Quotient[i + j - 1, n, 1], {i, n}, {j, n}]; Table[ Det[ f[n]], {n, 1, 50}]
|
|
CROSSREFS
|
Sequence in context: A277012 A277022 A232603 * A100613 A070911 A276082
Adjacent sequences: A069477 A069478 A069479 * A069481 A069482 A069483
|
|
KEYWORD
|
easy,sign
|
|
AUTHOR
|
Robert G. Wilson v and Marc LeBrun, Mar 26 2002
|
|
STATUS
|
approved
|
|
|
|