login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069359 a(n) = n * Sum_{p|n} 1/p where p are primes dividing n. 26
0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 10, 1, 9, 8, 8, 1, 15, 1, 14, 10, 13, 1, 20, 5, 15, 9, 18, 1, 31, 1, 16, 14, 19, 12, 30, 1, 21, 16, 28, 1, 41, 1, 26, 24, 25, 1, 40, 7, 35, 20, 30, 1, 45, 16, 36, 22, 31, 1, 62, 1, 33, 30, 32, 18, 61, 1, 38, 26, 59, 1, 60, 1, 39, 40, 42, 18, 71, 1, 56 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Coincides with arithmetic derivative on squarefree numbers: a(A005117(n)) = A068328(n) = A003415(A005117(n)). - Reinhard Zumkeller, Jul 20 2003, Clarified by Antti Karttunen, Nov 15 2019

a(n) = n-1 iff n = 1 or n is a primary pseudoperfect number A054377. - Jonathan Sondow, Apr 16 2014

a(1) = 0 by the standard convention for empty sums.

“Seva” on the MathOverflow link asks if the iterates of this sequence are all eventually 0. - Charles R Greathouse IV, Feb 15 2019

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384 (first 10000 terms from Franklin T. Adams-Watters)

Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000

MathOverflow, A recursion with a number-theoretic function (2019)

FORMULA

G.f.: Sum(x^p(j)/(1-x^p(j))^2,j>=1), where p(j) is the j-th prime. - Vladeta Jovovic, Mar 29 2006

a(n) = A230593(n) - n. a(n) = A010051(n) (*) A000027(n), where operation (*) denotes Dirichlet convolution, that is, convolution of type: a(n) = Sum_(d|n) b(d) * c(n/d) = Sum_(d|n) A010051(d) * A000027(n/d). - Jaroslav Krizek, Nov 07 2013

a(A054377(n)) = A054377(n) - 1. - Jonathan Sondow, Apr 16 2014

Dirichlet g.f.: zeta(s - 1)*primezeta(s). - Geoffrey Critzer, Mar 17 2015

Sum_{k=1..n} a(k) ~ A085548 * n^2 / 2. - Vaclav Kotesovec, Feb 04 2019

From Antti Karttunen, Nov 15 2019: (Start)

a(n) = Sum_{d|n} A008683(n/d)*A323599(d).

a(n) = A003415(n) - A329039(n) = A230593(n) - n = A306369(n) - A000010(n).

a(n) = A276085(A329350(n)) = A048675(A329352(n)).

a(A276086(n)) = A329029(n), a(A328571(n)) = A329031(n).

(End)

a(n) = Sum_{d|n} A000010(d) * A001221(n/d). - Torlach Rush, Jan 21 2020

a(n) = Sum_{k=1..n} omega(gcd(n, k)). - Ilya Gutkovskiy, Feb 21 2020

EXAMPLE

a(12) = 10 because the prime divisors of 12 are 2 and 3 so we have: 12/2 + 12/3 = 6 + 4 = 10. - Geoffrey Critzer, Mar 17 2015

MAPLE

A069359 := n -> add(n/d, d = select(isprime, numtheory[divisors](n))):

seq(A069359(i), i = 1..20); # Peter Luschny, Jan 31 2012

# second Maple program:

a:= n-> n*add(1/i[1], i=ifactors(n)[2]):

seq(a(n), n=1..100);  # Alois P. Heinz, Oct 23 2019

MATHEMATICA

f[list_, i_] := list[[i]]; nn = 100; a = Table[n, {n, 1, nn}]; b =

Table[If[PrimeQ[n], 1, 0], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Mar 17 2015 *)

PROG

(Sage)

def A069359(n) :

    D = filter(is_prime, divisors(n))

    return add(n/d for d in D)

print([A069359(i) for i in (1..20)]) # Peter Luschny, Jan 31 2012

(PARI) a(n) = n*sumdiv(n, d, isprime(d)/d); \\ Michel Marcus, Mar 18 2015

(PARI) a(n) = my(ps=factor(n)[, 1]~); sum(k=1, #ps, n\ps[k]) \\ Franklin T. Adams-Watters, Apr 09 2015

(MAGMA) [0] cat [n*&+[1/p: p in PrimeDivisors(n)]:n in [2..80]]; // Marius A. Burtea, Jan 21 2020

CROSSREFS

Cf. A003415, A005117, A068328, A010051, A000027, A054377, A180253, A230593, A292786, A306369, A322078, A326690, A329029, A329350, A329352.

Cf. A322068 (partial sums), A323599 (Inverse Möbius transform).

Sequence in context: A069626 A249274 A205443 * A318320 A014652 A060448

Adjacent sequences:  A069356 A069357 A069358 * A069360 A069361 A069362

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Apr 15 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 15:58 EDT 2020. Contains 337905 sequences. (Running on oeis4.)