OFFSET
1,2
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..1383
Index entries for linear recurrences with constant coefficients, signature (9,-21,3,24,-8,-4,4).
FORMULA
G.f.: x*(1-x+x^3)/((1-2*x-2*x^2)*(2*x^5-4*x^4+x^3+9*x^2-7*x+1)). - Vladeta Jovovic, Jul 02 2003
MATHEMATICA
CoefficientList[Series[x*(1-x+x^3)/((1-2*x-2*x^2)*(2*x^5-4*x^4+x^3+9*x^2 -7*x+1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 22 2018 *)
LinearRecurrence[{9, -21, 3, 24, -8, -4, 4}, {1, 8, 51, 295, 1632, 8830, 47239}, 20] (* Harvey P. Dale, May 21 2023 *)
PROG
(PARI) Vec(-x*(1-x+x^3)/(2*x^2+2*x-1)/(2*x^5-4*x^4+x^3+9*x^2-7*x+1) + O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x+x^3)/((1-2*x-2*x^2)*(2*x^5-4*x^4+x^3+9*x^2-7*x+1)))); // G. C. Greubel, Apr 22 2018
CROSSREFS
Row 3 of A359575.
Cf. 2 X n A048739, 4 X n A069326, 5 X n A069327, 6 X n A069328, 7 X n A069329, 8 X n A069330, 9 X n A069331, 10 X n A069332, 11 X n A069333, 12 X n A069334, 13 X n A069335, 14 X n A069336, 15 X n A069337, 16 X n A069338, 17 X n A069339, 18 X n A069340, 19 X n A069341, 20 X n A069342, n X n A069343, n X n symmetric A069344.
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Mar 16 2002
STATUS
approved