login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Continued fraction for rho with erf(rho) = 1/2 = erfc(rho).
2

%I #13 Mar 01 2023 04:39:25

%S 0,2,10,2,1,17,3,1,12,6,6,2,2,1,7,1,6,1,15,2,1,1,2,1,1,1,2,4,1,6,1,1,

%T 1,4,14,2,10,1,3,3,4,1,2,1,8,7,1,12,2,1,1,1,6,4,2,1,2,1,2,1,3,1,7,4,2,

%U 1,7,1,1,2,35,1,13,13,1,2,9,8,1,1,11,2,3,12,15,1,4,2,2,1,2,2,7,1,3,3

%N Continued fraction for rho with erf(rho) = 1/2 = erfc(rho).

%H G. C. Greubel, <a href="/A069287/b069287.txt">Table of n, a(n) for n = 0..5000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Erf.html">Erf</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Erfc.html">Erfc</a>.

%e 0.4769362762044698733814183536431305598089697490594706447...

%t ContinuedFraction[InverseErf[1/2], 50] (* _G. C. Greubel_, Apr 22 2018 *)

%Y Cf. A069286 (decimal expansion).

%K nonn,cofr

%O 0,2

%A _Frank Ellermann_, Mar 14 2002