This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069284 Decimal expansion of Li(2) = gamma + ln(ln(2)) + sum_{k=1..inf} ln(2)^k / ( k*k! ). 1

%I

%S 1,0,4,5,1,6,3,7,8,0,1,1,7,4,9,2,7,8,4,8,4,4,5,8,8,8,8,9,1,9,4,6,1,3,

%T 1,3,6,5,2,2,6,1,5,5,7,8,1,5,1,2,0,1,5,7,5,8,3,2,9,0,9,1,4,4,0,7,5,0,

%U 1,3,2,0,5,2,1,0,3,5,9,5,3,0,1,7,2,7,1,7,4,0,5,6,2,6,3,8,3,3,5,6,3,0,6,0,2

%N Decimal expansion of Li(2) = gamma + ln(ln(2)) + sum_{k=1..inf} ln(2)^k / ( k*k! ).

%C Li(x) = Li(2) + integral 1/ln(t) dt from 2 to x > 2.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LogarithmicIntegral.html">Logarithmic Integral</a>

%e 1.0451637801174927848445888891946131365226155781512015758329...

%t RealDigits[ LogIntegral[2], 10, 105][[1]] (from Robert G. Wilson v Oct 08 2004)

%Y Cf. A069285 (continued fraction), A057754, A057794, A060851.

%Y Euler's constant gamma: A001620, ln(2): A002162, k*k!: A001563.

%K nonn,cons

%O 1,3

%A _Frank Ellermann_, Mar 13 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .