login
A069239
Denominator of coefficient G_n defined by Sum_{ (m,m') != (0,0)} 1/(m+m'*sqrt(-2))^(2*n) = (4*w)^(2*n)*G_n/(2*n)!, where 2w is one of the periods of the associated Weierstrass P-function.
2
3, 3, 3, 3, 33, 3, 3, 51, 57, 33, 3, 3, 3, 3, 33, 51, 3, 57, 3, 1353, 129, 3, 3, 51, 33, 3, 57, 3, 177, 33, 3, 51, 201, 3, 33, 4161, 3, 3, 3, 23001, 249, 129, 3, 267, 627, 3, 3, 4947, 3, 33, 3, 3, 321, 57, 33, 5763, 3, 177, 3, 1353, 3, 3, 2451, 51, 4323, 201
OFFSET
1,1
REFERENCES
E. Dintzl, Über die Zahlen im Koerper k(sqrt(-2)), welche den Bernoulli'schen Zahlen analog sind, Sitz. K. Akad. Wiss. Wien, Math.-Naturw. Klasse, 108 (1909), 1-29.
FORMULA
For n >= 2, G_n = A069182(n-1)*(2*n)/(2^(2*n-1)*(-1+(-2)^n)).
EXAMPLE
G_1, G_2, ... = 2/3, 1/3, 2/3, 10/3, 700/33, 700/3, 9800/3, 3185000/51, ...
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Apr 13 2002
EXTENSIONS
More terms from Sean A. Irvine, Apr 13 2024
STATUS
approved