login
A069238
Numerator of coefficient G_n defined by Sum_{ (m,m') != (0,0)} 1/(m+m'*sqrt(-2))^(2*n) = (4*w)^(2*n)*G_n/(2*n)!, where 2w is one of the periods of the associated Weierstrass P-function.
2
2, 1, 2, 10, 700, 700, 9800, 3185000, 85358000, 1484210000, 4904900000, 213514756000, 10932576200000, 651421552600000, 491216647558000000, 59347135259594000000, 308654469531044000000, 582291574342534420000000, 3395537788696824680000000
OFFSET
1,1
REFERENCES
E. Dintzl, Über die Zahlen im Koerper k(sqrt(-2)), welche den Bernoulli'schen Zahlen analog sind, Sitz. K. Akad. Wiss. Wien, Math.-Naturw. Klasse, 108 (1909), 1-29.
FORMULA
For n >= 2, G_n = A069182(n-1)*(2*n)/(2^(2*n-1)*(-1+(-2)^n)).
EXAMPLE
G_1, G_2, ... = 2/3, 1/3, 2/3, 10/3, 700/33, 700/3, 9800/3, 3185000/51, ...
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Apr 13 2002
STATUS
approved