

A069218


a(1)=1, a(2)=8; for n >= 1, a(n+2)=(a(n+1)+a(n))/3 if (a(n+1)+a(n)==0 (mod 3)); a(n+2)=(a(n+1)+a(n))/2 if (a(n+1)+a(n)==0 (mod 2)); a(n+2)=a(n+1)+a(n) otherwise.


1



1, 8, 3, 11, 7, 6, 13, 19, 16, 35, 17, 26, 43, 23, 22, 15, 37, 26, 21, 47, 34, 27, 61, 44, 35, 79, 38, 39, 77, 58, 45, 103, 74, 59, 133, 64, 197, 87, 142, 229, 371, 200, 571, 257, 276, 533, 809, 671, 740, 1411, 717, 1064, 1781, 2845, 1542, 4387, 5929, 5158, 11087
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A CollatzFibonacci mixture. Does this sequence diverge to infinity? Conjecture: if a(1)=1 and a(2)=2 sequence is constant = 1, if a(2)=5 sequence is cyclic = (5,2,7,3) but if a(2)=m, different from 2 or 5, sequence diverges.


LINKS

Table of n, a(n) for n=1..59.


CROSSREFS

Sequence in context: A257811 A122159 A069200 * A248295 A265236 A286568
Adjacent sequences: A069215 A069216 A069217 * A069219 A069220 A069221


KEYWORD

easy,nonn


AUTHOR

Benoit Cloitre, Apr 11 2002


STATUS

approved



