login
A069208
a(n) = Sum_{ d divides n } phi(n)/phi(d).
2
1, 2, 3, 5, 5, 6, 7, 11, 10, 10, 11, 15, 13, 14, 15, 23, 17, 20, 19, 25, 21, 22, 23, 33, 26, 26, 31, 35, 29, 30, 31, 47, 33, 34, 35, 50, 37, 38, 39, 55, 41, 42, 43, 55, 50, 46, 47, 69, 50, 52, 51, 65, 53, 62, 55, 77, 57, 58, 59, 75, 61, 62, 70, 95, 65, 66, 67, 85, 69, 70, 71
OFFSET
1,2
COMMENTS
a(n) = n iff n is squarefree number (cf. A005117).
LINKS
FORMULA
Multiplicative with a(p^e) = (p^(e+1)-p^e+p^(e-1)-1)/(p-1).
a(n) = phi(n) * Sum_{k=1..n} 1/phi(n / gcd(n, k))^2. - Daniel Suteu, Nov 04 2018
a(n) = Sum_{k=1..n, gcd(n,k) = 1} tau(gcd(n,k-1)). - Ilya Gutkovskiy, Sep 24 2021
From Werner Schulte, Feb 27 2022: (Start)
Dirichlet convolution of A005361 and A000010.
Dirichlet convolution of A112526 and A000027.
Dirichlet g.f.: Sum_{n>0} a(n) / n^s = zeta(s-1) * zeta(2*s) * zeta(3*s) / zeta(6*s). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 15015/(2764*Pi^2) = 0.550411... . - Amiram Eldar, Oct 22 2022
MATHEMATICA
Table[EulerPhi[n]*Total[1/EulerPhi@Divisors@n], {n, 71}] (* Ivan Neretin, Sep 20 2017 *)
f[p_, e_] := (p^(e + 1) - p^e + p^(e - 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 14 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(n)/eulerphi(d)) \\ Michel Marcus, Jun 17 2013
(PARI) a(n) = my(f=factor(n)); prod(k=1, #f~, (f[k, 1]^(f[k, 2]-1) + (f[k, 1]-1)*f[k, 1]^f[k, 2]-1) / (f[k, 1]-1)); \\ Daniel Suteu, Nov 04 2018
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Vladeta Jovovic, Apr 10 2002
STATUS
approved