

A069160


Number of primes p such that n^2 < p < n^2 + pi(n), where pi(n) is the number of primes less than n.


1



0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 0, 1, 2, 2, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 0, 1, 2, 2, 3, 1, 2, 3, 1, 3, 2, 3, 1, 0, 1, 1, 2, 1, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 4, 2, 1, 2, 2, 3, 0, 2, 3, 3, 2, 2, 0, 2, 2, 2, 2, 3, 2, 3, 1, 3, 2, 1, 5, 2, 3, 2, 4, 2, 5, 3, 3, 4, 4, 1, 2, 3, 3, 3, 5, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,10


COMMENTS

A more restrictive version of the conjecture that there is always a prime between n^2 and (n+1)^2.


LINKS

T. D. Noe, Table of n, a(n) for n=1..10000


EXAMPLE

a(10)= 2 because pi(10) = 4 and there are 2 primes between 100 and 104.


MATHEMATICA

maxN=100; lst={}; For[i=1, i<maxN, i++, n=i^2; cnt=0; k=1; While[k<PrimePi[i], If[PrimeQ[n+k], cnt++ ]; k++ ]; AppendTo[lst, cnt]]; lst


CROSSREFS

Cf. A000720, A014085.
Sequence in context: A205593 A277937 A112020 * A089616 A089615 A301593
Adjacent sequences: A069157 A069158 A069159 * A069161 A069162 A069163


KEYWORD

easy,nonn


AUTHOR

T. D. Noe, Apr 09 2002


STATUS

approved



