The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069142 Primes p such that p+2, 2p+1, and 2p+3 are also prime. 7
 5, 29, 659, 809, 2129, 2549, 3329, 3389, 5849, 6269, 10529, 33179, 41609, 44129, 53549, 55439, 57329, 63839, 65099, 70379, 70979, 72269, 74099, 74759, 78779, 80669, 81929, 87539, 93239, 102299, 115469, 124769, 133979, 136949, 156419 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Previous name: Lower prime in a twin pair that yields another. a(n) gives the terms for A005382(i)-A005384(j)=2. - J. M. Bergot, Mar 12 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 EXAMPLE 659 and 661 form a prime twin pair. Their sum is 1320. 1320 is sandwiched between 1319 and 1321, which form another prime twin pair. So 659 is in the sequence. MATHEMATICA p = q = 1; Do[q = Prime[n]; If[p + 2 == q && PrimeQ[2p + 1] && PrimeQ[2p + 3], Print[p]]; p = q, {n, 1, 10^4}] Select[Prime[Range[15000]], PrimeQ[# + 2] && PrimeQ[2 # + 1] && PrimeQ[2 # + 3]&] (* Vincenzo Librandi, Apr 09 2013 *) PROG (MAGMA) [p: p in PrimesUpTo(160000) | IsPrime(p+2) and IsPrime(2*p+1) and IsPrime(2*p+3)]; // Vincenzo Librandi, Apr 09 2013 (PARI) forprime(p=1, 10^5, if(isprime(p+2)&&isprime(2*p+1)&&isprime(2*p+3), print1(p, ", "))) \\ Derek Orr, Mar 11 2015 CROSSREFS Cf. A014574. Cf. A005384, A005382. Sequence in context: A197962 A259534 A176680 * A144994 A263369 A072880 Adjacent sequences:  A069139 A069140 A069141 * A069143 A069144 A069145 KEYWORD nonn,easy AUTHOR Neil Fernandez, Apr 08 2002 EXTENSIONS Edited and extended by Robert G. Wilson v, Apr 11 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 07:28 EDT 2020. Contains 337317 sequences. (Running on oeis4.)