|
|
A069138
|
|
Triangle formed by multiplying Stirling numbers of 2nd kind S2(n,m) (A008277) by m+1.
|
|
0
|
|
|
2, 2, 3, 2, 9, 4, 2, 21, 24, 5, 2, 45, 100, 50, 6, 2, 93, 360, 325, 90, 7, 2, 189, 1204, 1750, 840, 147, 8, 2, 381, 3864, 8505, 6300, 1862, 224, 9, 2, 765, 12100, 38850, 41706, 18522, 3696, 324, 10, 2, 1533, 37320, 170525, 255150, 159789, 47040, 6750, 450, 11
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The number of rhyme schemes for a stanza of n+1 lines with m rhyming syllables in its first n lines.
|
|
REFERENCES
|
Suggested by R. K. Guy, Mar 11, 2002.
|
|
LINKS
|
Table of n, a(n) for n=1..55.
Stephen Pollard, C.S. Peirce and the Bell Numbers, Mathematics Magazine, Vol. 76 (2003), pp. 99-106.
|
|
FORMULA
|
T(n, m) = (m+1)*S2(n, m).
|
|
EXAMPLE
|
Triangle begins:
2;
2, 3;
2, 9, 4;
2, 21, 24, 5;
2, 45, 100, 50, 6;
...
|
|
PROG
|
(PARI) T(n, m) = stirling(n, m, 2)*(m+1);
tabl(nn) = for(n=1, nn, for (k=1, n, print1(T(n, m), ", ")); print); \\ Michel Marcus, Sep 21 2017
|
|
CROSSREFS
|
Row sums give Bell numbers A000110.
Sequence in context: A177047 A016001 A016012 * A179592 A058671 A016002
Adjacent sequences: A069135 A069136 A069137 * A069139 A069140 A069141
|
|
KEYWORD
|
nonn,tabl,easy
|
|
AUTHOR
|
N. J. A. Sloane, Apr 10 2002
|
|
EXTENSIONS
|
More terms from Larry Reeves (larryr(AT)acm.org), Jul 01 2002
|
|
STATUS
|
approved
|
|
|
|