login
Jordan function J_9(n).
5

%I #32 Oct 12 2020 02:23:44

%S 1,511,19682,261632,1953124,10057502,40353606,133955584,387400806,

%T 998046364,2357947690,5149441024,10604499372,20620692666,38441386568,

%U 68585259008,118587876496,197961811866,322687697778,510999738368

%N Jordan function J_9(n).

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

%H G. C. Greubel, <a href="/A069094/b069094.txt">Table of n, a(n) for n = 1..5000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Jordan%27s_totient_function">Jordan's totient function</a>.

%F a(n) = Sum_{d|n} d^9*mu(n/d).

%F Multiplicative with a(p^e) = p^(9e)-p^(9(e-1)).

%F Dirichlet generating function: zeta(s-9)/zeta(s). - _Ralf Stephan_, Jul 04 2013

%F a(n) = n^9*Product_{distinct primes p dividing n} (1-1/p^9). - _Tom Edgar_, Jan 09 2015

%F Sum_{k=1..n} a(k) ~ 18711*n^10 / (2*Pi^10). - _Vaclav Kotesovec_, Feb 07 2019

%F From _Amiram Eldar_, Oct 12 2020: (Start)

%F lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^9 = 1/zeta(10).

%F Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^9/(p^9-1)^2) = 1.0020122252... (End)

%t JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 9]; Array[f, 22]

%t f[p_, e_] := p^(9*e) - p^(9*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 12 2020 *)

%o (PARI) for(n=1,100,print1(sumdiv(n,d,d^9*moebius(n/d)),","))

%Y Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5).

%Y Cf. A013668.

%K easy,nonn,mult

%O 1,2

%A _Benoit Cloitre_, Apr 05 2002