OFFSET
0,2
COMMENTS
This sequence is related to the tridecagon or triskaidecagon (13-gon).
The lengths of the diagonals of the regular tridecagon are r[k] = sin(k*Pi/13)/sin(Pi/13), 1 <= k <= 6, where r[1] = 1 is the length of the edge.
LINKS
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
Index entries for linear recurrences with constant coefficients, signature (3, 6, -4, -5, 1, 1).
FORMULA
G.f.: 1/(1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6). - Roger L. Bagula and Gary W. Adamson, Sep 19 2006
a(n-2) = T(n,3) with T(n,k) = sum(T(n-1,k1), k1=7-k..6), T(1,1) = T(1,2) = T(1,3) = T(1,4) = T(1,5) = 0 and T(1,6) = 1, n>=1 and 1 <= k <= 6. [Steinbach]
sum(T(n,k)*r[k], k=1..6) = r[6]^n, n>=1, with r[k] = sin(k*Pi/13)/sin(Pi/13). [Steinbach]
MAPLE
nmax:=22: with(LinearAlgebra): M:=Matrix([[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0]]): v:= Vector[row]([1, 1, 1, 1, 1, 1]): for n from 0 to nmax do b:=evalm(v&*M^n); a(n):=b[4] od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 03 2011
nmax:=24: m:=6: for k from 1 to m-1 do T(1, k):=0 od: T(1, m):=1: for n from 2 to nmax do for k from 1 to m do T(n, k):= add(T(n-1, k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n, k), k=1..m) od; for n from 2 to nmax do a(n-2):=T(n, 3) od: seq(a(n), n=0..nmax-2); # Johannes W. Meijer, Aug 03 2011
MATHEMATICA
b = {1, -3, -6, 4, 5, -1, -1}; p[x_] := Sum[x^(n - 1)*b[[8 - n]], {n, 1, 7}] q[x_] := ExpandAll[x^6*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] (* Roger L. Bagula and Gary W. Adamson, Sep 19 2006 *)
CoefficientList[Series[1/(1 - 3 x - 6 x^2 + 4 x^3 + 5 x^4 - x^5 - x^6), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 19 2015 *)
PROG
(PARI) Vec(1/(1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)+O(x^33)) \\ Joerg Arndt, Sep 19 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 02 2002
EXTENSIONS
Edited by Henry Bottomley, May 06 2002
Information added by Johannes W. Meijer, Aug 03 2011
STATUS
approved