

A068987


a(n) is the first position in the digit sequence 3,1,4,1,5,9,.... of Pi where the pattern "1,2,...,n" occurs (where position of the initial 3 is 1).


14




OFFSET

1,1


COMMENTS

1. We may never know if a(n) is defined for all n.
2. We split up the digits of any number > 9 in the pattern, e.g., if n = 11, we search for the pattern "1,2,3,4,5,6,7,8,9,1,0,1,1".
3. The pattern "1,2,3,4,5,6" does not occur before the 100,000th term in the digit sequence of Pi.
Two more terms a(6) and a(7) were found via the referenced PiSearch link [Andersen], through which 100 million digits of Pi are currently available.  Rick L. Shepherd, Oct 10 2002
200 million digits now available at PiSearch page.  Rick L. Shepherd, Aug 06 2006
This sequence uses position = 1 for the initial digit 3 of Pi, while A121280(n) = a(n)1 starts counting at 0, as does the "Pi search page" and sequences A035117, A050279  A050287, A048940, A096755  A096763.  M. F. Hasler, Mar 18 2017
a(10) > 2*10^9.  M. F. Hasler, Apr 13 2019


REFERENCES

Wacław Sierpiński, O stu prostych, ale trudnych zagadnieniach arytmetyki. Warsaw: PZWS, 1959, p. 32.


LINKS

Table of n, a(n) for n=1..9.
D. G. Andersen, The PiSearch Page
SubIdiom.com, Irrational numbers search engine: π = 3.14159.... (Search within 2*10^9 digits, since at least 2009, maybe 2002.)


FORMULA

a(n) = A121280(n) + 1.  M. F. Hasler, Apr 13 2019


MATHEMATICA

p = ToString[N[Pi, 50000]/10]; t = {1, 12, 123, 1234, 12345}; g[n_] := StringPosition[p, ToString[n]][[1]][[1]]  2; Table[g[t[[i]]], {i, 1, 5}]


CROSSREFS

First occurrence of n times the same digit: A035117 (n '1's), A050281 (n '2's), A050282, A050283, A050284, A050286, A050287, A048940 (n '9's).
First occurrence of exactly n times the same digit: A096755 (exactly n '1's), A096756, A096757, A096758, A096759, A096760, A096761, A096762, A096763 (exactly n '9's), A050279 (exactly n '0's).
First occurrence of n: A176341; of concatenate(1,...,n): A121280 = A068987  1.
Cf. A000796: Decimal expansion (or digits) of Pi.
Sequence in context: A175974 A062596 A142415 * A273047 A209077 A141139
Adjacent sequences: A068984 A068985 A068986 * A068988 A068989 A068990


KEYWORD

nonn,base


AUTHOR

Joseph L. Pe, Apr 01 2002


EXTENSIONS

More terms from Rick L. Shepherd, Oct 10 2002
a(8) from Rick L. Shepherd, Aug 06 2006
Additional term a(9), using subidiom search engine, from M. F. Hasler, Apr 13 2019


STATUS

approved



