login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068982 Limit of the product of a modified Zeta function. 1

%I

%S 4,3,5,7,5,7,0,7,6,7,7,2,6,4,5,5,9,3,7,3,7,6,2,2,9,7,0,1,2,0,9,4,1,8,

%T 6,3,4,9,6,8,6,4,1,7,4,9,2,4,3,6,8,0,3,8,1,7,5,4,6,0,9,8,9,0,9,2,3,0,

%U 0,2,3,6,0,1,6,1,0,3,0,5,3,1,8,8,0,4,3,9,7,9,5,9,7,7,2,3,4,0,6,5,3,7,6,9

%N Limit of the product of a modified Zeta function.

%C The "modified Zeta function" Zetam(n) = sum(mu(k)/k^n) may be helpful when searching for a closed form for Apery's constant.

%F Product(Sum(mu(k)/k^n)), k=1..infinity, n=2..infinity

%F Equals 1/A021002. - _R. J. Mathar_, Jan 31 2009

%e 0.43575707...

%p with(numtheory); evalf(Product(Sum('mobius(k)/k^n','k'=1..infinity),n=2..infinity),40); Note: For practical reasons you should change "infinity" to some finite value.

%p evalf(product(1/Zeta(n), n=2..infinity), 120); # _Vaclav Kotesovec_, Oct 22 2014

%t digits = 104; 1/NProduct[ Zeta[n], {n, 2, Infinity}, WorkingPrecision -> digits+10, NProductFactors -> 1000] // RealDigits[#, 10, digits]& // First (* _Jean-Fran├žois Alcover_, Feb 15 2013 *)

%Y Cf. A021002, A002117.

%K cons,nonn

%O 0,1

%A Andre Neumann Kauffman (andrekff(AT)hotmail.com), Apr 01 2002

%E Corrected and extended by _R. J. Mathar_, Jan 31 2009

%E Example corrected by _R. J. Mathar_, Jul 23 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 06:24 EDT 2020. Contains 337317 sequences. (Running on oeis4.)