The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068766 Generalized Catalan numbers. 4
 1, 1, 8, 68, 608, 5664, 54528, 538944, 5441024, 55889408, 582348800, 6140864512, 65414742016, 702897995776, 7609805045760, 82929151328256, 908978855215104, 10014523823357952, 110840574196580352, 1231847926116384768 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n)=K(4,4; n)/4 with K(a,b; n) defined in a comment to A068763. LINKS Fung Lam, Table of n, a(n) for n = 0..925 FORMULA a(n)=(4^n)*p(n, -3/4) with the row polynomials p(n, x) defined from array A068763. a(n+1)= 4*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1). G.f.: (1-sqrt(1-16*x*(1-3*x)))/(8*x). Recurrence: (n+1)*a(n) = 48*(2-n)*a(n-2) + 8*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014 a(n) ~ sqrt(6) * 12^n / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014 a(n) = 2^n*GegenbauerC(n-1, -n, -2)/(2*n) for n>=1. - Peter Luschny, May 09 2016 MAPLE a := n -> `if`(n=0, 1, simplify(2^n*GegenbauerC(n-1, -n, -2))/(2*n)): seq(a(n), n=0..19); # Peter Luschny, May 09 2016 MATHEMATICA CoefficientList[Series[(1-Sqrt[1-16*x*(1-3*x)])/(8*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *) CROSSREFS Cf. A000108, A068764-5, A068767-72, A025227-30. Sequence in context: A163307 A281337 A152105 * A233736 A279266 A054915 Adjacent sequences:  A068763 A068764 A068765 * A068767 A068768 A068769 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Mar 04 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 21:37 EDT 2020. Contains 334690 sequences. (Running on oeis4.)