login
a(1) = 5; a(n) = smallest palindromic multiple of a(n-1).
10

%I #16 Mar 03 2024 21:06:57

%S 5,55,5005,55055,50155105,5065665605,50155155155105,

%T 5464353998993534645,541025148469303964841520145,

%U 513016415223221833242338122322514610315

%N a(1) = 5; a(n) = smallest palindromic multiple of a(n-1).

%t a[1] = 5; a[n_] := a[n] = Block[{k = 2}, While[k*a[n - 1] != ToExpression[ StringReverse[ ToString[k*a[n - 1]]]], k++ ]; k*a[n - 1]]; Table[a[n], {n, 1, 9}]

%t spm[n_]:=Module[{k=2},While[!PalindromeQ[k*n],k++];k*n]; NestList[spm,5,10] (* _Harvey P. Dale_, Nov 10 2022 *)

%Y Cf. A068664, A068665, A068667, A068668, A070069, A068971, A068972, A068973, A068974.

%K base,nonn,more

%O 1,1

%A _Amarnath Murthy_, Mar 01 2002

%E Corrected and extended by _David W. Wilson_ and _Patrick De Geest_, Mar 30 2002

%E a(10) from _John Gustaf Stebbins_, Sep 17 2008