This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068652 Numbers such that every cyclic permutation is a prime. 19
 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Sarcone link claimed (erroneously) that after 319993 all terms are repunits. - N. J. A. Sloane, May 04 2017. The claim is obviously false, at least nine larger non-repunit terms appear after 319993. They are, not surprisingly, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331. - Alexei Kourbatov, May 04 2017. It appears that the errors in the Sarcone web page have now been corrected. - N. J. A. Sloane, Jun 17 2017 See the closely related sequence A016114 for further information. - N. J. A. Sloane, May 04 2017 LINKS Ray Chandler, Table of n, a(n) for n = 1..57 K. S. Brown, On General Palindromic Numbers C. K. Caldwell, Circular Primes P. De Geest, Circular Primes Gianni A. Sarcone, Tourbillonnants nombres premiers, Tangente Web Site, No date. EXAMPLE 197 is a member as all the three cyclic permutations 197,971,719 are primes. MATHEMATICA fQ[p_] := Module[{b = IntegerDigits[p]}, And @@ Table[PrimeQ[FromDigits[b = RotateLeft[b]]], {Length[b] - 1}]]; Select[Prime[Range[100000]], fQ] (* T. D. Noe, Mar 22 2012 *) ecppQ[n_]:=AllTrue[FromDigits/@Table[RotateLeft[IntegerDigits[n], i], {i, IntegerLength[n]}], PrimeQ]; Select[Range[400000], ecppQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 25 2015 *) CROSSREFS Cf. A003459, A016114, A091633. Sequence in context: A107845 A234901 A090934 * A003459 A276132 A202264 Adjacent sequences:  A068649 A068650 A068651 * A068653 A068654 A068655 KEYWORD base,nonn AUTHOR Amarnath Murthy, Feb 28 2002 EXTENSIONS More terms from Martin Renner, Apr 10 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.