login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068620 Number of strings over Z_4 of length n with trace 0 and subtrace 0. 10
1, 2, 4, 8, 56, 272, 1184, 4736, 17536, 65792, 254464, 1015808, 4130816, 16781312, 67641344, 270565376, 1077968896, 4295032832, 17146445824, 68585259008, 274609995776, 1099512676352, 4400196091904, 17600784367616, 70385932435456, 281474993487872 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n; 0,0) where a(n; t,s) is the number of length n 4-ary strings whose digits sum to t mod 4 and whose sum of products of all pairs of digits sum to s mod 4.

LINKS

Table of n, a(n) for n=1..26.

Max Alekseyev, PARI/GP scripts for miscellaneous math problems

F. Ruskey, Strings over Z_4 of given Trace and Subtrace

FORMULA

a(n; t, s) = a(n-1; t, s) + a(n-1; t+3, s+3t+1) + a(n-1; t+2, s+2t) + a(n-1; t+1, s+t+1) where t is the trace and s is the subtrace.

Empirical g.f.: -x*(704*x^7-704*x^6+288*x^5-56*x^4+32*x^3-24*x^2+8*x-1) / ((2*x-1)*(4*x-1)*(8*x^2-4*x+1)*(16*x^4+1)). - Colin Barker, Dec 06 2014

EXAMPLE

a(3;0,0)=4 since the four 4-ary strings of trace 0, subtrace 0 and length 3 are { 000, 022, 202, 220 }.

CROSSREFS

Cf. A068711, A068774, A068777, A068786, A068778, A068787, A068788, A068789, A068790.

Sequence in context: A058816 A018446 A289324 * A073953 A206850 A094333

Adjacent sequences:  A068617 A068618 A068619 * A068621 A068622 A068623

KEYWORD

easy,nonn

AUTHOR

Frank Ruskey and Nate Kube, Aug 15 2002

EXTENSIONS

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 19 2007

Terms a(11) onward from Max Alekseyev, Apr 14 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 05:29 EST 2018. Contains 317333 sequences. (Running on oeis4.)