%I #10 Aug 03 2020 14:43:33
%S 8,81,841,38416,3841600,384160000,38416000000,3841600000000,
%T 384160000000000,38416000000000000,3841600000000000000,
%U 384160000000000000000,38416000000000000000000
%N Starting from a(1)=8, each subsequent term is the minimal square obtained by inserting at least one digit in the previous term.
%C The growing square sequence for 1 and 6, 2 and 5, 4 and 9 in pairs are the same.
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (100).
%F For n>=4, a(n) = 38416*100^(n-4).
%F From _Chai Wah Wu_, Aug 03 2020: (Start)
%F a(n) = 100*a(n-1) for n > 4.
%F G.f.: x*(45684*x^3 + 7259*x^2 + 719*x - 8)/(100*x - 1). (End)
%e a(2)=81 hence a(3) = 841 the smallest square formed from 81.
%Y Cf. A068175, A068176, A068177, A068178, A068616.
%K base,nonn
%O 1,1
%A _Amarnath Murthy_, Feb 25 2002
%E More terms from _Sean A. Irvine_, Sep 24 2009
%E Edited and extended by _Max Alekseyev_, Oct 12 2009