login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068501 Values m such that the consecutive pair parameters(m,m+1) generate Pythagorean triples whose odd terms are both prime. 7

%I

%S 1,2,5,9,14,29,30,35,39,50,65,69,90,99,135,174,189,204,224,230,260,

%T 284,285,315,320,330,369,375,410,440,464,495,515,519,525,534,545,564,

%U 575,585,590,680,719,729,744,749,765,854,870,905,915,950,974,1080,1119

%N Values m such that the consecutive pair parameters(m,m+1) generate Pythagorean triples whose odd terms are both prime.

%C Setting u=m; v=m+1, triples (a,b,c) with a=u+v, b=2*u*v, c = u^2+v^2 = (a^2+1)/2 correspond to (A048161, A067755, A067756), a and c being both prime.

%H Zak Seidov, <a href="/A068501/b068501.txt">Table of n, a(n) for n = 1..10000</a>

%H Robert Simms, <a href="http://www.math.clemson.edu/~rsimms/neat/math/pyth">Pythagorean Triples Generator</a>

%t lst={};Do[If[PrimeQ[(n+1)^2-n^2]&&PrimeQ[(n+1)^2+n^2],AppendTo[lst,n]],{n,7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jun 01 2010 *)

%t Reap[Do[a=Prime[k];If[PrimeQ[(a^2+1)/2],Sow[(a-1)/2]],{k,2,10^5}]][[2,1]](* _Zak Seidov_, Apr 16 2011 *)

%Y Cf. A051892.

%K nonn

%O 1,2

%A _Lekraj Beedassy_, Mar 25 2002

%E More terms from Larry Reeves (larryr(AT)acm.org), Jun 19 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 17:46 EST 2016. Contains 278985 sequences.