login
A068476
a(n) = Sum_{m=1..n} m*n^(m+(-1)^n).
1
0, 1, 20, 34, 5008, 3711, 1948356, 937924, 1205220416, 429794605, 1098765432100, 310989720966, 1390027428561168, 326011399456939, 2332600912091693348, 466937872906120456, 5016202619581534249216, 875711370981239308953
OFFSET
0,3
LINKS
FORMULA
If n >= 2, a(n) = n^(1+(-1)^n)*(n^n*(n^2-n-1)+1)/(n-1)^2. - Robert Israel, Nov 15 2017
EXAMPLE
a(2) = 2^(1+1)+2*2^(2+1) = 4+16 = 20.
MAPLE
b := n->sum(m*n^(m+(-1)^n), m=1..n);
# Alternative:
f:= n -> n^(1+(-1)^n)*(n^n*(n^2-n-1)+1)/(n-1)^2:
f(0):= 0: f(1):= 1:
map(f, [$0..40]);
MATHEMATICA
Table[Sum[m*n^(m+(-1)^n), {m, 1, n}], {n, 0, 30}] (* G. C. Greubel, Oct 13 2018 *)
PROG
(PARI) a(n) = sum(m=1, n, m*n^(m+(-1)^n)); \\ Michel Marcus, Nov 15 2017
(Magma) [0] cat [(&+[m*n^(m+(-1)^n): m in [1..n]]): n in [1..30]]; // G. C. Greubel, Oct 13 2018
CROSSREFS
Cf. A062806 (without the (-1)^n).
Sequence in context: A043946 A160937 A060124 * A003895 A157426 A325603
KEYWORD
nonn
AUTHOR
Francois Jooste (phukraut(AT)hotmail.com), Mar 10 2002
STATUS
approved