%I #54 Sep 08 2022 08:45:05
%S 1,2,2,5,4,1,6,7,0,2,4,6,5,1,7,7,6,4,5,1,2,9,0,9,8,3,0,3,3,6,2,8,9,0,
%T 5,2,6,8,5,1,2,3,9,2,4,8,1,0,8,0,7,0,6,1,1,2,3,0,1,1,8,9,3,8,2,8,9,8,
%U 2,2,8,8,8,4,2,6,7,9,8,3,5,7,2,3,7,1,7,2,3,7,6,2,1,4,9,1,5,0,6,6,5,8,2,1,7
%N Decimal expansion of Gamma(3/4).
%H G. C. Greubel, <a href="/A068465/b068465.txt">Table of n, a(n) for n = 1..20000</a>
%H Russell J. Matheson, <a href="http://www.plouffe.fr/simon/constants/gamma34.txt">GAMMA(3/4) computed to 14550 digits</a>.
%H Simon Plouffe, <a href="http://plouffe.fr/simon/articles/1409.0110v1.pdf">GAMMA(3/4) to 256 places</a>, see p. 65.
%H <a href="/index/Ga#gamma_function">Index to sequences related to the Gamma function</a>
%F This number * A068466 = sqrt(2)*Pi = A063448. - _R. J. Mathar_, Jun 18 2006
%F Equals Integral_{x>=0} x^(-1/4)*exp(-x) dx. - _Vaclav Kotesovec_, Nov 12 2020
%F Equals (Pi/2)^(1/4) * sqrt(AGM(1,sqrt(2))) = sqrt(A069998 * A053004). - _Amiram Eldar_, Jun 12 2021
%e Gamma(3/4) = 1.225416702465177645129098303362890526851239248108070611...
%p evalf(GAMMA(3/4)) ; # _R. J. Mathar_, Jan 10 2013
%t RealDigits[Gamma[3/4], 10, 100][[1]] (* _G. C. Greubel_, Mar 11 2018 *)
%o (PARI) default(realprecision, 100); gamma(3/4) \\ _G. C. Greubel_, Mar 11 2018
%o (Magma) SetDefaultRealField(RealField(105)); Gamma(3/4); // _G. C. Greubel_, Mar 11 2018
%Y Cf. A000796, A002193, A053004, A063448, A068466, A069998.
%K cons,easy,nonn
%O 1,2
%A _Benoit Cloitre_, Mar 10 2002